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Introduction

In this Ph.D. thesis we discuss several di�erent results in the �eld of commutative

algebra.

Commutative algebra is the branch of abstract algebra born to study the rings

occurring in algebraic number theory and algebraic geometry.

The subject, �rst known as ideal theory, began with Richard Dedekind's work on

ideals in 1879, itself based on the earlier work of Ernst Kummer and Leopold Kro-

necker. The concept of ideal was introduced to extend the well known factorization

properties of the integers to the rings of algebraic integers, originally called number

rings. Such rings are the object of study of the algebraic number theory, they are

Dedekind rings and constitute an important class of commutative rings. In the same

context, considerations related to modular arithmetic have led to the notion of a

valuation ring. While the restriction of algebraic �eld extensions to subrings has led

to the notions of integral extensions and integrally closed domains.

Later, David Hilbert introduced the term ring to generalize the earlier term

number ring. Hilbert in the �rst years of 20th century introduced a more abstract

approach and his contribution is considered the basis of the study of commutative

rings occurring in a geometric context, such as the rings corresponding to algebraic

varieties. He strongly in�uenced Emmy Noether, who recast many earlier results in

terms of an ascending chain condition, now known as the Noetherian condition.

Another important milestone was the work of Hilbert's student Emanuel Lasker,

who introduced primary ideals and proved the �rst version of the Lasker�Noether

theorem which states that in a Noetherian ring every ideal has a unique primary

decomposition and widely generalize the fundamental theorem of arithmetic.

The main �gure responsible for the birth of commutative algebra as a mature

subject was Wolfgang Krull, who introduced in the years 30's and 40s', the funda-

mental notions of localization and completion of a ring, as well as that of regular

local rings. He established the concept of the Krull dimension of a ring, �rst for

Noetherian rings before moving on to expand his theory to cover general valuation

rings and Krull rings. To this day, Krull's principal ideal theorem is considered

one of the single most important foundational theorems in commutative algebra.

These results paved the way for a modern introduction of commutative algebra into

algebraic geometry, an idea which would revolutionize the latter subject.

The notion of localization of a ring (in particular the localization with respect

to a prime ideal, the localization consisting in inverting a single element and the

total quotient ring) is one of the main di�erences between commutative algebra and

the theory of non-commutative rings. It leads to an important class of commutative

rings, the rings that have only one maximal ideal, called local rings. The set of

the prime ideals of a commutative ring is naturally equipped with a topology, the
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Zariski topology. All these notions are widely used in algebraic geometry and are the

basic technical tools for the de�nition of scheme theory, a generalization of algebraic

geometry introduced by Alexander Grothendieck in 1960. Many other notions of

commutative algebra are counterparts of geometrical notions occurring in algebraic

geometry. This is the case of Krull dimension, primary decomposition, regular rings,

Cohen�Macaulay rings, Gorenstein rings and many others.

Much of the modern development of commutative algebra emphasizes modules

and homological methods. Both ideals of a ring R and R-algebras are special cases

of R-modules, so module theory encompasses both ideal theory and the theory of

ring extensions. Homological algebra is the branch of mathematics that studies ho-

mology in a general algebraic setting. Its origins can be traced to investigations in

combinatorial topology (a precursor to algebraic topology) and theory of modules

and syzygies at the end of the 19th century, chie�y by Henri Poincaré and David

Hilbert. The development of homological algebra was closely related with the emer-

gence of category theory. It consists in the study of homological functors and the

intricate algebraic structures that they describe like chain complexes, which can be

studied both through their homology and cohomology. Homological algebra extracts

information contained in these complexes and present it in the form of homological

invariants of rings, modules, topological spaces, and other 'tangible' mathematical

objects. Some very important results in commutative algebra, like the unique factor-

ization property for regular local rings have been proved using homological methods

while a non-homological proof is not known.

In parallel with the development of schemes theory, module theory and homologi-

cal algebra, from the 1960's many authors further studied the branch of commutative

algebra called multiplicative ideal theory and now more generally called commutative

ring theory. This subject, based on the initial work of Wolfgang Krull and Heinz

Prüfer, is seen as a generalization of the study of rings arising from algebraic number

theory. The main topics studied are factorization theory, generalization of Dedekind

domains in a non-Noetherian context like Krull domains and Prüfer domains, rings of

integer valued polynomials and star operations. A great contribution to this branch

of algebra has been given by Robert Gilmer and many of his students in over forty

years of work.

The common thread of the topics of this thesis is their relation with singularities

of algebraic varieties.

In algebraic geometry, the problem of resolution of singularities asks whether

every algebraic variety V has a resolution, that is a non-singular variety W with

a proper birational map W → V . For varieties over �elds of characteristic 0 this

was proved in the formidable work of Hironaka in 1964 [28]. Many years later, in

2017 again Hironaka published online a work proving the existence of a resolution

of singularities for varieties over �elds of characteristic p.

The main tools used by authors like Zariski [41], Abhyankhar [2] and Hironaka

in the 50's were normalization and blow up of the varieties. The notion of blowing

up is to replace a variety with singular points with a larger variety in which the

di�erent directions through the singular points are now distinct. For instance, the

curve x2 − y2 + x3 = 0 takes two distinct paths through the origin. By blowing up

the origin in the plane, is possible to replace the origin with a projective line. Then,

considering the curve in the blown-up space, the two distinct paths of the curve in
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the origin now intersect this projective line in two distinct points and the curve no

longer intersects itself.

In general repeatedly blowing up the singular points of a curve will eventually

resolve the singularities.

The content of this thesis is the following: in the �rst two chapters we focus on

the structure and the ideal-theoretic properties of the Shannon extensions of regular

local rings. A Shannon extension is a local integral domain obtained as in�nite

union of iterated local monoidal (or quadratic) transforms of a regular local ring R

of dimension at least 2 (for the de�nitions and all the details about this construction

see the introduction of Chapter 1).

This process of iterating local monoidal transforms of rings of the same dimension

corresponds to the geometric notion of following a non singular closed point through

repeated blow-ups.

While this concept were mainly studied from the 50's until the 70's by Ab-

hyankhar [1] and Shannon [38] for their geometric interpretation, in recent times

Heinzer, Loper, Olberding, Schoutens, Toeniskoetter ([25], [26]) and other authors

studied the ring theoretic structure of Shannon extensions often "forgetting" about

the geometric origin of such concepts. The tools used in these works are those of

multiplicative ideal theory such as pullbacks, GCD domains and complete integral

closure of rings.

In Chapter 1, following the work [21], we continue the study of quadratic Shannon

extensions looking in particular at their classi�cation. In order to do this, we also use

some resolution of singularities in the more algebraic language of projective models

rather than projective schemes.

In Chapter 2, we move to study a more general and wide class of rings formed

by the monoidal Shannon extensions, introduced (not with their actual name) by

Shannon in [38], but almost never studied after his classical paper.

In Chapter 3, we studied a di�erent topic related to the theory of semigroup

rings. Semigroup rings are, geometrically speaking, the local rings associated to

monomial curves. They are called in this way because they can be studied using

their semigroup of values, which is a numerical semigroup (a co�nite submonoid of

the natural numbers). The values of the elements of a semigroup ring are given by

the rank one discrete valuation induced by the integral closure of the ring (we give

all the de�nitions needed on this topic in Chapter 3).

This natural correspondence with numerical semigroups allows to understand al-

gebraic properties of such rings, and therefore geometric properties of the associated

curves (such as the singularity of some points). Originally they were studied by

authors such as Kunz and Herzog ([52], [51]) in the 70's and many researches and

generalizations are still being done on this subject. Later also the study of numerical

semigroups seen as pure algebraic structures started and became consistent.

An useful object used to understand properties of a geometric ring R (a ring is

called geometric if it is the local ring of an algebraic variety or a completion of such

a local ring) is the associated graded ring with respect to an ideal I of R, which,

geometrically, is the coordinate ring of the tangent cone along the subvariety de�ned

by I.

Properties like Gorensteinness and Complete Intersection of an associated graded

ring can be investigated looking at quotients of such ring by a maximal regular

sequence. This fundamental fact allows to transfer many properties from Artinian
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rings to rings of which they are quotients. Hence the study of Artinian graded

algebras over a �eld have become very important since the last years of 1900. It is

easier to deal with an Artinian graded algebra since it is possible to use combinatorial

methods that �t with their natural lattice structure.

Important properties studied for Artinian graded algebras are the Lefschetz prop-

erties [50] which are motivated by the Hard Lefschetz Theorem on the cohomology

rings of smooth irreducible complex projective varieties. Here we give results on

the Weak Lefschetz properties for Artinian graded algebras associated to numerical

semigroups.

For more technical and detailed introductions on each of the cited topics we refer

to the preliminary introduction of the chapters of this thesis.
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Chapter 1

Directed union of local quadratic

transform of regular local rings

1.1 Introduction

We start giving the de�nition of local quadratic transform of a regular local ring.

De�nition 1.1.1. LetR be a regular local ring with maximal idealm = (x1, . . . , xd)R,

where d = dimR is the Krull dimension of R. Choose i ∈ {1, . . . , n}, and consider

the overring R[x1

xi
, . . . , xn

xi
] of R. Choose any maximal ideal m1 of R[x1

xi
, . . . , xn

xi
] that

contains m. Then the ring

R1 := R

[
x1
xi

, . . . ,
xn
xi

]

m1

is a local quadratic transform of R.

It is a standard fact that R1 is again a regular local ring and dimR1 ≤ n, cf. [35,

Corollary 38.2]. Iterating the process we obtain a sequence

R = R0 ⊆ R1 ⊆ R2 ⊆ · · ·

of regular local overrings of R such that for each i, Ri+1 is a local quadratic trans-

form of Ri. The sequence of positive integers {dimRi}i∈N stabilizes, and dimRi =

dimRi+1 for all su�ciently large i. If dimRi = 1, then necessarily Ri = Ri+1, while

if dimRi ≥ 2, then Ri ( Ri+1.

In general is possible to de�ne local quadratic transforms of Noetherian local

domains that need not be regular local rings along a �xed valuation overring of R.

De�nition 1.1.2. Let (R,m) be a Noetherian local domain and let (V,mV ) be a

valuation domain birationally dominating R. Then mV = xV for some x ∈ m. The

ring

R1 = R
[
m

x

]

mV ∩R

[m

x

]

is called a local quadratic transform (LQT) of R along V .

The ring R1 is a Noetherian local domain that dominates R with maximal ideal

m1 = mV ∩ R1. Since V birationally dominates R1, we may iterate this process to

obtain an in�nite sequence {Rn}n≥0 of LQTs of R0 = R along V . If Rn = V for

some n, then V is a DVR and the sequence stabilizes with Rm = V for all m ≥ n.
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This fact happens if and only if V is a prime divisor of R, that is a valuation

overring birationally dominatingR such that trdeg(V/mV , R/m) is equal to dimR−1.
Hence, in any case in which V is not a prime divisor of R, {Rn} is an in�nite

strictly ascending sequence of Noetherian local domains.

Assume that R is an RLR with dimR ≥ 2 and V is minimal as a valuation

overring of R. Then dimR1 = dimR, and the process may be continued by de�ning

R2 to be the LQT of R1 along V . Continuing the procedure yields an in�nite strictly

ascending sequence {Rn}n∈N of RLRs all dominated by V .

The process of iterating local quadratic transforms of ring with the same Krull

dimension is the algebraic expression of the geometric idea of following a closed

point through a sequence of iterated blow-ups of a nonsingular point of an algebraic

variety, with each blow up occurring at a closed point in the �ber of the previous

blow-up. This geometric process is used in the works about resolution of singularities

for curves on surfaces (see, for example, [3] and [9, Sections 3.4 and 3.5]), and in

factorization of birational morphisms between nonsingular surfaces ([1, Theorem

3] and [41, Lemma, p. 538]). These applications depend on properties of iterated

sequences of local quadratic transforms of a two-dimensional regular local ring. For

a two-dimensional regular local ring R, Abhyankar [1, Lemma 12] shows that the

limit of this process of iterating local quadratic transforms R = R0 ⊆ R1 ⊆ R2 ⊆ · · ·
is a valuation ring that birationally dominates R; i.e., the in�nite union V =

⋃∞
i=0Ri

is a valuation ring with the same quotient �eld as R and the maximal ideal of V
contains the maximal ideal of R.

Later, David Shannon [38, Examples 4.7 and 4.17] shows with two examples that

the union

S =

∞⋃

i=0

Ri

of an iterated sequence of local quadratic transforms of a regular local ring of Krull

dimension > 2 need not to be a valuation ring. We will brie�y discuss these two

examples in next section.

Recently, W. Heinzer, K. A. Loper, B. Olberding, H. Schoutens and M. Toeniskoet-

ter in [25], and some of the same authors in[26] studied from the ring-theoretic point

of view the structure of such rings S and how this structure is related to properties

of the sequence {Ri}∞i=0. We call S a quadratic Shannon extension of R. In general,

a quadratic Shannon extension is not necessarily a valuation ring nor a Noetherian

ring, although it is always an intersection of two such rings (see Theorem 1.2.5).

The class of quadratic Shannon extensions separates into two cases, the archimedean

ones and non-archimedean. A quadratic Shannon extension S is non-archimedean if

there is an element x in the maximal ideal of S such that
⋂

i>0 x
iS 6= 0. This class

of quadratic Shannon extensions is analyzed in detail in [25] and [26].

In this chapter of the thesis, following the article "Directed unions of local

quadratic transforms of a regular local ring and pullbacks"[21], we use techniques

from multiplicative ideal theory to classify non-archimedean quadratic Shannon ex-

tensions as the pullbacks of valuation rings of rational rank one with respect to a

homomorphism from a regular local ring onto its residue �eld.

In Section 1.2, we �rst recall the most important results from the papers [25] and

[26] and then we discuss some results from [21] about the multiplicity sequence of a

sequence of local quadratic transform along a rank one valuation ring. The concept
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of multiplicity sequence (see De�nition 1.2.12) will be also crucial for the pullback

classi�cation of non-archimedean quadratic Shannon extensions.

In Section 1.3, we present this classi�cation with several variations in Lemma 1.3.6

and Theorems 1.3.8 and 1.4.1. The pullback description leads in Theorem 1.3.7 to

an existence results for quadratic Shannon extensions contained in a localization of

the base ring R at a any given nonmaximal prime ideal P . We de�ne such rings as

Shannon extensions along the prime ideal P .

As another application, in Theorem 1.4.5 of Section 1.4, we use pullbacks to

characterize the quadratic Shannon extensions S of regular local rings R such that

R is essentially �nitely generated over a �eld of characteristic 0 and S has a principal

maximal ideal.

The fact that non-archimedean quadratic Shannon extensions occur as pullbacks

is also useful because of the extensive literature on transfer properties between the

rings in a pullback square. In Section 1.5, we use the pullback classi�cation and

some structural results for archimedean quadratic Shannon extensions obtained in

[25] to show in Theorem 1.5.2 that a quadratic Shannon extension is a GCD domain

if and only if it is a valuation domain (in the same theorem will be also proved that

it is a coherent ring if and only if it is a valuation ring).

In general, our notation for the �rst two chapters is as in Matsumura [33]. Thus

a local ring need not be Noetherian. An element x in the maximal ideal m of a

regular local ring R is said to be a regular parameter if x 6∈ m2. It then follows that

the residue class ring R/xR is again a regular local ring. We call an extension ring

B of an integral domain A an overring of A if B is a subring of the quotient �eld

of A. If, in addition, A and B are local and the inclusion map A ↪→ B is a local

homomorphism (i.e. the maximal ideal of A is contained in the maximal ideal of

B), we say that B birationally dominates A. We use UFD as an abbreviation for

unique factorization domain, RLR as abbreviation for regular local ring and DVR as

an abbreviation for rank 1 discrete valuation ring. If P is a prime ideal of a ring A,

we denote by κ(P ) the residue �eld AP /PAP of AP . In our terminology, any ring

of fractions over an integral domain D is said a localization of D even when it is not

a local ring.

1.2 Preliminaries on Quadratic Shannon extensions

Let (R,m) be a regular local ring with dimR ≥ 2 and let F denote the quotient

�eld of R. David Shannon's work in [38] on sequences of quadratic and monoidal

transforms of regular local rings motivates our terminology in De�nition 1.2.1.

De�nition 1.2.1. Let (R,m) be a regular local ring with dimR ≥ 2. With R = R0,

let {Rn,mn} be an in�nite sequence of RLRs, such that dimRn ≥ 2 and Rn+1 is an

LQT of Rn for each n. Then the ring S =
⋃

n≥0Rn is called a quadratic Shannon

extension.

In [25] and [26], the authors call S simply a Shannon extension of R. We have

made a distinction here since in Chapter 2 we will deal with monoidal transforms

and their in�nite unions. Since dimRn ≥ 2, we have Rn ( Rn+1 for each positive

integer n and
⋃

nRn is an in�nite ascending union.
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A quadratic Shannon extension S is always an integrally closed local domain

with maximal ideal mS =
⋃

nmn.

If dimR = 2, then the quadratic Shannon extensions of R are precisely the

valuation rings that birationally dominate R and are minimal as a valuation overring

of R [1, Lemma 12]. If dimR > 2, then, examples due to Shannon [38] show that

there are quadratic Shannon extensions that are not valuation rings.

As mentioned in the introduction, the structure of Shannon extensions naturally

separates into those that are archimedean and those that are non-archimedean. We

recall the concept of archimedean domain in the following de�nition.

De�nition 1.2.2. An integral domain A is archimedean if
⋂

n>0 a
nA = 0 for each

nonunit a ∈ A.

An integral domain A with dimA ≤ 1 is archimedean. We recall here two

Shannon's examples in order to give to the reader some ideas about what kind of

rings we will deal with.

Example 1.2.3. [38, Examples 4.7 and 4.17]

Let dimR = 3 and m = (x, y, z)R.

1. De�ne for n ≥ 1,

Rn = Rn−1

[ y

xn
,
z

xn

]

(x, y

xn
, z
xn

)

and S =
⋃∞

n≥0Rn.

This ring S is a non archimedean domain of dimension 3 with principal maximal

ideal mS = xS. The unique prime of height two is the ideal Q =
⋂∞

n≥0 x
nS.

Since y
z
, z
y
6∈ S, S is not a valuation ring.

2. Let V be a rank 1 valuation overring of R such that v(z) > v(x) + v(y) and V

birationally dominates R.

Then, the Shannon extension S obtained along V is an archimedean domain of

dimension 2 and mS = m2
S . Hence it is not a valuation ring, since a valuation

ring V with dimV ≥ 2 would be non-archimedean.

It happens, if dimR > 2, that there are valuations rings V that birationally

dominate R with V minimal as a valuation overring of R, which are not a Shannon

extension of R. Indeed, if V has rank > 2, then V is not a quadratic Shannon

extension of R (see [17, Proposition 7]).

Now we recall some of the results from [25] and [26] with special emphasis on

non-archimedean quadratic Shannon extensions.

Theorems 1.2.4 and 1.2.5 record properties of a quadratic Shannon extension.

Theorem 1.2.4. [25, Theorems 3.3, 3.5 and 3.8]

Let (S,mS) be a quadratic Shannon extension of a regular local ring R. Then:

1. The maximal ideal of S, mS is either principal or idempotent.

2. S is Noetherian if and only if it is a DVR.

3. Any non maximal prime ideal P of S is such that SP = (Rn)P∩Rn for n >> 0.

4. For any n >> 0, set Rn+1 = Rn

[
mn

xn

]

mn+1

. Then xnS is an mS-primary ideal.
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There exists a collection of rank one discrete valuation rings associated to each

quadratic Shannon extension. Let S =
⋃

i≥0Ri be a quadratic Shannon extension

of R = R0 and for each i, let Vi be the DVR de�ned by the order function ordRi
,

where for x ∈ Ri,

ordRi
(x) = sup{n | x ∈ m

n
i }

and ordRi
is extended to the quotient �eld of Ri by de�ning ordRi

(x/y) = ordRi
(x)−

ordRi
(y) for all x, y ∈ Ri with y 6= 0. The family {Vi}∞i=0 determines the set

V =
⋃

n≥0

⋂

i≥n

Vi = {a ∈ F | ordRi
(a) ≥ 0 for i� 0}.

The set V consists of the elements in F that are in all but �nitely many of the

Vi. In [25, Corollary 5.3], is proved that V is a valuation domain that birationally

dominates S. For this reason V is called the boundary valuation ring of the Shannon

extension S. The valuation associated to the boundary valuation ring of a quadratic

Shannon has rank at most 2 [26, Theorem 6.4 and Corollary 8.6].

Theorem 1.2.5. [25, Theorems 4.1, 5.4 and 8.1] Let (S,mS) be a quadratic Shannon

extension of a regular local ring R. Let T be the intersection of all the DVR overrings

of R that properly contain S, and let V be the boundary valuation ring of S. Then:

1. S is a valuation domain if and only if either dim(S) = 1 or dim(S) = 2 and

the value group of V is Z⊕G with G ≤ Q.

2. S = V ∩ T .

3. There exists x ∈ mS such that xS is mS-primary, and T = S[1/x] for any such

x. It follows that the units of T are precisely the ratios of mS-primary elements

of S and dimT = dimS − 1.

4. T is a localization of Ri for i � 0. In particular, T is a Noetherian regular

UFD.

5. T is the unique minimal proper Noetherian overring of S.

In light of item 5 of Theorem 1.2.5, the ring T is called the Noetherian hull of S.

The following function that we de�ne, called w can be used to stabilize whether

a quadratic Shannon extension S is non-archimedean and it is also related to the

Boundary valuation ring of S

De�nition 1.2.6. Let S =
⋃

i≥0Ri be a quadratic Shannon extension of a regular

local ring R and let F be its quotient �eld.

Fix x ∈ S such that xS is primary for the maximal ideal of S, and de�ne

w : F → R ∪ {−∞, +∞}

by de�ning w(0) = +∞, and for each q ∈ F×,

w(q) = lim
n→∞

ordn(q)

ordn(x)
.
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The function w satis�es all the properties of a valuation, except for the fact that

can assume in�nite value on nonzero elements.

Next Theorem 1.2.7 shows that, in a non-archimedean quadratic Shannon ex-

tension S, there is a prime ideal Q such that S/Q is a rational rank one valuation

ring and Q is also a prime ideal of the Noetherian hull T of S. In the next section

this fact is going to be the basis for the classi�cation of non-archimedean quadratic

Shannon extensions as pullbacks.

Theorem 1.2.7. Let S =
⋃

n≥0Rn be a quadratic Shannon extension of a regular

local ring R with quotient �eld F , and let x be an element of S that is primary

for the maximal ideal mS of S (see Theorem 1.2.5). Assume that dimS ≥ 2. Let

Q =
⋂

n≥1 x
nS, and let T = S[1/x] be the Noetherian hull of S. Then the following

are equivalent:

1. S is non-archimedean.

2. T = (Q :F Q).

3. Q is a nonzero prime ideal of S.

4. Every nonmaximal prime ideal of S is contained in Q.

5. T is a (regular) local ring.

6.
∑∞

n=0w(mn) = ∞, where w is as in De�nition 1.2.6 and mn is the maximal

ideal of Rn for each n ≥ 0.

Moreover if (1)�(6) hold for S and Q, then T = SQ, Q = QSQ is a common ideal of

S and T , and S/Q is a rational rank 1 valuation domain on the residue �eld T/Q

of T . In particular, Q is the unique maximal ideal of T .

Proof. The equivalence of items 1 through 5 can be found in [26, Theorem 8.3]. That

statement 1 is equivalent to 6 follows from [26, Theorem 6.1]. To prove the moreover

statement, de�ne Q∞ = {a ∈ S | w(a) = +∞}, where w is as in De�nition 1.2.6.

By [26, Theorem 8.1], Q∞ is a prime ideal of S and T , and by [26, Remark 8.2],

Q∞ is the unique prime ideal of S of dimension 1. Since also item 4 implies every

nonmaximal prime ideal of S is contained in Q, it follows that Q = Q∞.

By item 5, T = S[1/x] is a local ring. Since xS is mS-primary, we have that

T = SQ. Since Q is an ideal of T , we conclude that QSQ = Q and Q is the unique

maximal ideal of T . By [26, Corollary 8.4], S/Q is a valuation domain, and by [26,

Theorem 8.5], S/Q has rational rank 1.

Remark 1.2.8. If statements (1) � (6) hold for S, then Theorem 1.2.7 and [15,

Theorem 2.3] imply that any principal ideal of S that is primary for mS is comparable

to every other ideal of S with respect to set inclusion. Conversely, if a Shannon

extension S has a principal ideal that is primary for mS and is comparable to every

other ideal of S, then by [15, Theorem 2.3], S satis�es statement 3 of Theorem 1.2.7,

and hence S decomposes as in the statement of Theorem 1.2.7.

Remark 1.2.9. Let S be a non archimedean Shannon extension. A consequence of

Theorem 1.2.7 and of [26, Theorem 8.5] is that the function w of De�nition 1.2.6,

restricted to the elements of the quotient �eld of S/Q, corresponds to the valuation

associated to the valuation ring S/Q.
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We can further separate the case where S is archimedean to whether or not S is

completely integrally closed. We recall the de�nition and result.

De�nition 1.2.10. Let A be an integral domain. An element x in the �eld of

fractions of A is called almost integral over A if A[x] is contained in a principal

fractional ideal of A. The complete integral closure A∗ of A is the ring of all the

almost integral elements over A. The ring A is called completely integrally closed if

A∗ = A.

For a Noetherian domain, an element of the �eld of fractions is almost integral

if and only if it is integral.

Let W be the rank 1 valuation overring of the Boundary valuation ring V of S.

It is possible to characterize the complete integral closure S∗ of S:

Theorem 1.2.11. [25, Theorems 6.1, 6.2, 6.9] Let S be a quadratic Shannon exten-

sion. Then:

1. When S is non archimedean the complete integral closure S∗ of S is equal to

the Noetherian hull T .

2. When S is archimedean, the complete integral closure of S is

S∗ = (mS :Q(R) mS) = W ∩ T.

It follows that S is completely integrally closed if and only if V has rank 1.

Moreover, in this case the function w as in De�nition 1.2.6 is a rank 1 nondis-

crete valuation and its valuation ring is W .

We introduce now the concept of multiplicity sequence as in [21].

De�nition 1.2.12. Let R be a Noetherian local domain, let V be a rank 1 valuation

ring dominating R with corresponding valuation ν, and let {(Ri,mi)}∞i=0 be the in-

�nite sequence of LQTs along V (if Rn = Rn+1 for some integer n, then Rn = V is a

DVR and Rn = Rm for all m ≥ n, in this case we consider the sequence to be eventu-

ally constant). Then the sequence {ν(mi)}∞i=0 is the multiplicity sequence of (R,V);
see [18, Section 5]. We say the multiplicity sequence is divergent if

∑
i≥0 ν(mi) =∞.

Next Proposition generalizes the following fact, proved in [18, Proposition 23]:

If R is a regular local ring, V is a rank 1 valuation ring birationally dominating R,

and the multiplicity sequence of (R,V) is divergent, then V is a quadratic Shannon

extension of R. Furthermore, in [24, Proposition 7.3], is proved that in such case V
has rational rank 1. Here we give the same result when R is any Noetherian local

domain.

Proposition 1.2.13. Let (R,m) be a Noetherian local domain, let V be a rank 1

valuation ring that birationally dominates R, and let {Ri}∞i=0 be the in�nite sequence

of LQTs of R along V. If the multiplicity sequence of (R,V) is divergent, then

V =
⋃

n≥0Rn. Thus if V is a DVR, then V =
⋃

n≥0Rn.

Proof. Let ν be a valuation for V and let y be a nonzero element in V . Suppose we
have an expression y = an/bn, where an, bn ∈ Rn. Since Rn ⊆ V, it follows that

ν(bn) ≥ 0. If ν(bn) = 0, then since V dominates Rn, we have 1/bn ∈ Rn and y ∈ Rn.
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Assume otherwise, that is, ν(bn) > 0. Then bn ∈ mn, and since ν(an) ≥ ν(bn),

also an ∈ mn. Let xn ∈ mn be such that xnRn+1 = mnRn+1. Then an, bn ∈ xnRn+1,

so the elements an+1 = an/x and bn+1 = bn/x are in Rn+1. Thus we have the

expression y = an+1/bn+1, where ν(bn+1) = ν(bn)− ν(mn).

Consider an expression y = a0/b0, where a0, b0 ∈ R0. Then we iterate this process

to obtain a sequence of expressions {an/bn} of y, with an, bn ∈ Rn, where this process

halts at some n ≥ 0 if ν(bn) = 0, implying y ∈ Rn. Assume by way of contradiction

that this sequence is in�nite. ForN ≥ 0, it follows that ν(b0) = ν(bN )+
∑N−1

n=0 ν(mn).

Then ν(b0) ≥
∑N

n=0 ν(mn) for any N ≥ 0, so ν(b0) ≥
∑∞

n=0 ν(mn) = ∞, which

contradicts ν(b0) < ∞. This shows that the sequence {an/bn} is �nite and hence

y ∈ ⋃
nRn.

Examples of pairs (R,V) with divergent multiplicity sequence such that V is not

a DVR are given in [24, Examples 7.11 and 7.12].

The divergence of the multiplicity sequence in Proposition 1.2.13 is a su�cient

condition for V =
⋃

i≥0Ri, but not a necessary condition. Indeed, in Example 1.2.14,

we present two pairs (R,V) with convergent multiplicity sequence but in the �rst

case the union
⋃

i≥0Ri is equal to V while in the second case is properly contained.

Example 1.2.14. Let x, y, z be indeterminates over a �eld k. We �rst construct a

rational rank 1 valuation ring V ′ on the �eld k(x, y). We do this by describing an

in�nite sequence {(R′
n,m

′
n)}n≥0 of local quadratic transforms of R′

0 = k[x, y](x,y).

To indicate properties of the sequence, we de�ne a rational valued function v on

speci�c generators of the m′
n. The function v is to be additive on products. We set

v(x) = v(y) = 1. This indicates that y/x is a unit in every valuation ring birationally

dominating R′
1.

Step 1. Let R′
1 have maximal ideal m′

1 = (x1, y1)R1, where x1 = x, y1 = (y/x)− 1.

De�ne v(y1) = 1/2.

Step 2. The local quadratic transform R′
2 of R′

1 has maximal ideal m′
2 generated

by x2 = x1/y1, y2 = y1. We have v(x2) = 1/2, v(y2) = 1/2.

Step 3. De�ne y3 = (y2/x2)−1 and assign v(y3) = 1/4. Then x3 = x2, v(x3) = 1/2.

Step 4. The local quadratic transform R′
4 of R′

3 has maximal ideal m′
4 generated

by x4 = x3/y3, y4 = y3. Then v(x4) = v(y4) = 1/4.

Continuing this 2-step process yields an in�nite directed union (R′
n,m

′
n) of local

quadratic transforms of 2-dimensional RLRs. Let V ′ =
⋃

n≥0R
′
n. Then V ′ is a

valuation ring by an Abhyankhar's well known result [1, Lemma 12]. Let v′ be a

valuation associated to V ′ such that v′(x) = 1. Then v′(y) = 1 and v′ takes the same

rational values on the generators of m′
n as de�ned by v. Since there are in�nitely

many translations as described in Steps 2n+1 for each integer n ≥ 0, it follows that

V ′ has rational rank 1. For this fact see [24, Remark 5.1(4)].

The multiplicity values of {R′
n,m

′
n)} are 1, 12 ,

1
2 ,

1
4 ,

1
4 ,

1
8 ,

1
8 . . ., the sum of which

converges to 3.

De�ne V = V ′( z
x2y2

). V is the localization of the polynomial ring V ′[ z
x2y2

] at

the prime ideal mV ′V ′[ z
x2y2

]. One sometimes refers to V as a Gaussian or trivial

or Nagata extension of V ′ to a valuation ring on the simple transcendental �eld

extension generated by z
x2y2

over k(x, y). It follows that V has the same value group

as V ′ and the residue �eld of V is a simple transcendental extension of the residue

�eld of V ′ that is generated by the image of z
x2y2

in V/mV .
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Let v denote the associated valuation to V such that v(x) = 1. It follows that

v(y) = 1 and v(z) = v(x2y2) = 4. Let R0 = k[x, y, z](x,y,z). Then R0 is birationally

dominated by V . Let {(Rn,mn)}n≥0 be the sequence of local quadratic transforms

of R0 along V .

We describe the �rst few steps:

Step 1. R1 has maximal ideal m1 = (x1, y1, z1)R1, where x1 = x, y1 = (y/x) − 1,

and z1 = z/x. Also v(y1) = 1/2.

Step 2. The local quadratic transform R2 of R1 along V has maximal ideal m2

generated by x2 = x1/y1, y2 = y1 and z2 = z1/y1. We have v(x2) = 1/2, v(y2) = 1/2

and v(z2) = 4− 3/2 > 3/2.

Step 3. The local quadratic transform R3 of R2 along V has maximal ideal m3

generated by y3 = (y2/x2) − 1, x3 = x2 and z3. We have v(y3) = 1/4, v(x3) = 1/2

and v(z3) > 1/2.

Step 4. The local quadratic transform R4 of R3 along V has maximal ideal m4

generated by x4 = x3/y3, y4 = y3 and z4 = z3/y3.

The multiplicity values of the sequence {(Rn,mn)}n≥0 along V are the same

as that for {R′
n,m

′
n)}, namely 1, 12 ,

1
2 ,

1
4 ,

1
4 ,

1
8 ,

1
8 . . .. Let S =

⋃
n≥0Rn. Since S

is birationally dominated by the rank 1 valuation ring V , it follows that S is an

archimedean Shannon extension. Since we never divide in the z-direction, we have

S ⊆ RzR, and S is not a valuation ring, since it is an archimedean subring of a DVR.

1.3 The relation of Shannon extensions to pullbacks

Following the paper [21], we begin this section recalling the de�nition of pullback.

De�nition 1.3.1. Let α : A → C be an extension of rings, and let B be a subring

of C. The subring D = α−1(B) of A is the pullback of B along α : A→ C.

D B

A Cα

Alternatively, D is the �ber product A×CB of α and the inclusion map ι : B → C;

see, for example, [31, page 43].

The pullback construction is often used as source of examples in non-Noetherian

commutative ring theory and it is a generalization of the classical "D + M" con-

struction (see [14]). In the case in which A,B,C,D are domains, α is a surjection

and C is the quotient �eld of B, we say the diagram above is of type �
∗ (see [13]).

For a diagram of type �
∗, the kernel of α is a maximal ideal of A that is a common

ideal of A and D. The quotient �eld C of B can be identi�ed with the residue �eld

of this maximal ideal. If A is local with dimA ≥ 1 and dimB ≥ 1, then A = DM is

a localization of D and D is non-archimedean.

For an extensive study about pullbacks in ring theory see for example [10, 11, 13].

In a more general setting in which the ring C is not a �eld, the diagram is simply

said of type � (see [29]).

Sometimes the pullback construction can be also used as a classi�cation tool. A

simple example is given by the observation that a local domain D has a principal
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maximal ideal if and only if D occurs in a pullback diagram of type �
∗, where B

is a DVR [30, Exercise 1.5, p. 7]. A second example is given by the fact that for

nonnegative integers k < n, a ring D is a valuation domain of rank n if and only if

D occurs in pullback diagram of type �
∗, where A is a valuation ring of rank n− k

and B is a valuation ring of rank k; see [10, Theorem 2.4].

A third example of classi�cation via pullbacks of the form �
∗ is given by the

classi�cation of local rings of global dimension 2 by Greenberg [20, Corollary 3.7]

and Vasoncelos [39]: A local ring D has global dimension 2 if and only if D satis�es

one of the following:

(a) D is a regular local ring of Krull dimension 2,

(b) D is a valuation ring of global dimension 2, or

(c) D has countably many principal prime ideals andD occurs in a pullback diagram

of type �
∗, where A is a valuation ring of global dimension 1 or 2 and B is a

regular local ring of global dimension 2.

We use the pullback construction in this and the next section of this chapter to

classify among the overrings of a regular local ring R those that are non-archimedean

quadratic Shannon extensions of R. We prove in Theorem 1.3.8 that these are

precisely the overrings of R that occur in pullback diagrams of type �
∗, where A is

a localization of an iterated quadratic transform Ri of R at a prime ideal P and and

B is a rank 1 valuation overring of Ri/P having a divergent multiplicity sequence.

Thus a non-archimedean quadratic Shannon extension is determined by a rank 1

valuation ring and a regular local ring.

Next Theorem, using the characterization obtained in Theorem 1.2.7, shows that

a non-archimedean quadratic Shannon extension S is a pullback of a rank one val-

uation ring with respect to the residue map from the Noetherian hull of S to its

residue �eld.

Theorem 1.3.2. Let S be a non-archimedean quadratic Shannon extension. Then

there is a prime ideal Q of S and a rational rank 1 valuation ring V of κ(Q) such

that SQ is the Noetherian hull of S and S is the pullback of V along the residue map

α : SQ → κ(Q), as in the following diagram:

S = α−1(V) V

SQ κ(Q)α

Proof. Theorem 1.2.7 implies that there is a prime ideal Q of S such that SQ is

the Noetherian hull of S, Q = QSQ and S/Q is a rational rank 1 valuation ring.

Theorem 1.3.2 follows from these observations.

We want now to prove the converse of this assertion, which will be given in

Theorems 1.3.8 and 1.4.1.

Let S be a non-archimedean quadratic Shannon extension. The ideal Q of Theorem

1.3.2 is a non maximal prime ideal and therefore by Theorem 1.2.4, there exists

a positive integer n such that the Noetherian hull of S is SQ = (Rn)Q∩Rn . By

replacing, without loss of generality R with Rn as starting ring of our sequence, we

can say that S ⊆ RP where P = Q ∩ R is a prime ideal of R. This fact motivates
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the following de�nition, which uses the terminology of Granja and Sanchez-Giralda

[19, De�nition 3 and Remark 4].

De�nition 1.3.3. Let R be a Noetherian local domain and let {Rn}n≥0 be an

in�nite sequence of local quadratic transforms of R = R0. For a prime ideal P of R,

we say the quadratic sequence {Rn} is along RP if
⋃

n≥0Rn ⊆ RP .

For a nonzero, nonmaximal prime ideal P of a Noetherian local domain (R,m),

there is a one-to-one correspondence between sequences {Rn} of LQTs of R = R0

along RP and sequences {Rn} of LQTs of R0 = R/P .

Proposition 1.3.4. Let R be a Noetherian local domain and let P be a nonzero

nonmaximal prime ideal of R. Then there is a one-to-one correspondence between:

1. In�nite sequences {Rn}n≥0 of LQTs of R0 = R along RP .

2. In�nite sequences {Rn}n≥0 of LQTs of R0 = R/P .

Given such a sequence {Rn}n≥0, the corresponding sequence is {Rn/(PRP ∩ Rn)}.
Denote S =

⋃
n≥0Rn and S =

⋃
n≥0Rn, and let S̃ be the pullback of S with respect

to the quotient map RP → κ(P ) as in the following diagram:

S̃ = α−1(S) S

RP κ(P )α

Then S̃ = S + PRP and S̃ is non-archimedean.

Proof. The correspondence follows from [22, Corollary II.7.15, p. 165]. The fact that

S̃ = S+PRP is a consequence of the fact that S̃ is a pullback of S and RP . That S̃

is non-archimedean is a consequence of the observation that for each x ∈ m
S̃
\PRP ,

the fact that PRP ⊆ S̃ ⊆ RP implies PRP ⊆ xkS̃ for all k > 0.

Next lemma gives a su�cient condition for the union S =
⋃

n≥0Rn to be equal

to the pullback S̃. This condition involves property of the multiplicity sequence of

(R,S) (see De�nition 1.2.12) and the argument of the proof proceeds along the proof

of Proposition 1.2.13.

Lemma 1.3.5. Assume notation as in Proposition 1.3.4. If S is a rank 1 valuation

ring and the multiplicity sequence of (R,S) is divergent, then S = S̃.

Proof. Let ν be a valuation for S and assume that ν takes values in R. Let f ∈ S̃.

We claim that f ∈ S. Since S̃ = S+PRP , we may assume f ∈ PRP . Write f = g0
h0
,

where g0 ∈ P and h0 ∈ R \ P .

Suppose we have an expression of the form f = gn
hn
, where gn ∈ PRP ∩ Rn and

hn ∈ Rn \ PRP . Write mnRn+1 = xRn+1 for some x ∈ mn. Since PRP ∩Rn ⊆ mn,

it follows that gn = xgn+1 for gn+1 =
gn
x
∈ Rn+1. Denote the image of h ∈ Rn in Rn

by h. Since hn ∈ Rn \ PRP , we have that hn 6= 0 and ν(hn) is a �nite nonnegative

real number. If ν(hn) > 0, then hn ∈ mn, so hn = xhn+1 for hn+1 = hn

x
∈ Rn+1.

Thus we have written f = gn+1

hn+1
, where gn+1 ∈ PRP ∩Rn+1 and hn+1 ∈ Rn+1 \PRP ,

such that ν(hn+1) = ν(hn)− ν(mn).

Since
∑

n≥0 ν(mn) = ∞ and ν(h0) is �nite, this process must halt with f = gn
hn

as before such that ν(hn) = 0. Since ν(hn) = 0, hn is a unit in Rn, so hn is a unit

in Rn, and thus f ∈ Rn.
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In the case R is a regular local ring, the divergence of the multiplicity sequence of

(R,S) can be shown to be exactly equivalent to the condition S = S̃. Moreover these

two conditions are equivalent to have the Noetherian hull of the Shannon extension

S equal to RP .

Lemma 1.3.6. Let P be a nonzero nonmaximal prime ideal of a regular local ring R.

Let {Rn}n≥0 be a sequence of LQTs of R0 = R along RP and let {Rn} be the induced

sequence of LQTs of R0 = R/P as in Proposition 1.3.4. Denote S =
⋃

n≥0Rn and

S =
⋃

n≥0Rn. Then the following are equivalent:

1. S is the pullback of S along the surjective map RP → κ(P ).

2. The Noetherian hull of S is RP .

3. S is a rank 1 valuation ring and the multiplicity sequence of (R,S) is divergent.

If these conditions hold, then S has rational rank 1.

Proof. (1) =⇒ (2): As a pullback, the quadratic Shannon extension S is non-

archimedean (see the proof of Proposition 1.3.4). Let x ∈ S be such that xS is

mS-primary (see Theorem 1.2.5). By Theorem 1.2.7, the ideal Q =
⋂

n≥0 x
nS is

a nonzero prime ideal of S, every nonmaximal prime ideal of S is contained in Q

and T = SQ. Assumption (1) implies that PRP is a nonzero ideal of both S and

RP . Hence RP is almost integral over S. We have S ⊆ SQ = T ⊆ RP , and SQ is

an RLR and therefore completely integrally closed. It follows that SQ = RP is the

Noetherian hull of S.

(2) =⇒ (3): Since the Noetherian hull RP of S is local, Theorem 1.2.7 implies that

S is non-archimedean and PRP ⊆ S. By Theorem 1.3.2, S = S/PRP is a rational

rank 1 valuation ring. The valuation ν associated to S is equal to the valuation w

of Remark 1.2.9. Hence, by item 6 of Theorem 1.2.7, we have

∞∑

n=0

ν(mn) =

∞∑

n=0

w(mn) =∞.

(3) =⇒ (1): This is proved in Lemma 1.3.5.

We observe that the proof of Lemma 1.3.6 shows that the multiplicity sequence

of (R/P, S/PRP ) is given by {w(mi)}, where w is as in De�nition 1.2.6. A direct

consequence of Lemma 1.3.6 is the existence of a Shannon extension of R along P

for every nonzero nonmaximal prime ideal of R. This fact was already proved in a

di�erent way in [32, Lemma 1.21.1].

Theorem 1.3.7 (Existence of Shannon Extensions). Let P be a nonzero nonmaximal

prime ideal of a regular local ring R.

1. There exists a non-archimedean quadratic Shannon extension of R with RP as

its Noetherian hull.

2. If there exists an archimedean quadratic Shannon extension of R contained in

RP , then dimR/P ≥ 2.
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Proof. To prove item 1, we use a result of Chevalley that every Noetherian local

domain is birationally dominated by a DVR [8]. Let V be a DVR birationally

dominating R/P . We apply Lemma 1.3.6 with this R and P . Let {Rn} be the

sequence of LQTs of R0 = R/P along V . Let S be the union of the corresponding

sequence of LQTs of R given by Proposition 1.3.4. Proposition 1.2.13 implies that

S = V and Lemma 1.3.6 implies that S = S̃ is a non-archimedean Shannon extension

with RP as its Noetherian hull.

For item 2, if dimR/P = 1, then dimRP = dimR− 1 since an RLR is catenary.

If S is an archimedean Shannon extension of R, then dimS ≤ dimR − 1 by [25,

Lemma 3.4 and Corollary 3.6]. Therefore RP does not contain the Noetherian hull

of an archimedean Shannon extension of R if dimR/P = 1.

It is still unknown if there always exists archimedean quadratic Shannon exten-

sions of R contained in RP for any nonzero nonmaximal prime ideal P of R.

Now, in Theorem 1.3.8 we use Lemma 1.3.6 to characterize the overrings of a

regular local ring R that are Shannon extensions of R with Noetherian hull RP ,

where P is a nonzero nonmaximal prime ideal of R. Note that by Theorem 1.2.7

such a Shannon extension is necessarily non-archimedean.

Theorem 1.3.8 (Shannon Extensions with Speci�ed Local Noetherian Hull). Let

P be a nonzero nonmaximal prime ideal of a regular local ring R. The quadratic

Shannon extensions of R with Noetherian hull RP are precisely the rings S such that

S is a pullback along the residue map α : RP → κ(P ) of a rational rank 1 valuation

ring V birationally dominating R/P whose multiplicity sequence is divergent.

S = α−1(V) V

RP κ(P )α

Proof. If S is a quadratic Shannon extension with Noetherian hull RP , then by

Lemma 1.3.6, S is a pullback along the map RP → κ(P ) of a rational rank 1 valuation

ring birationally dominating R/P whose multiplicity sequence is divergent.

Conversely, let S be such a pullback. Let {Rn}n≥0 denote the sequence of LQTs

of R0 = R/P along V and let {Rn}n≥0 denote the induced sequence of LQTs of

R0 = R as in Proposition 1.3.4. Then Lemma 1.3.6 implies that S =
⋃

n≥0Rn, so S

is a quadratic Shannon extension.

We describe in Corollary 1.3.9 the quadratic Shannon extensions of R along the

prime ideals P of R such that dimR/P = 1.

Corollary 1.3.9. Let P be a prime ideal of the regular local ring R with dimR/P =

1. Then:

1. The quadratic Shannon extensions of R with Noetherian hull RP are precisely

the pullbacks along the residue map RP → κ(P ) of the �nitely many DVR

overrings V of R/P .

2. If R/P is a DVR, then R + PRP is the unique quadratic Shannon extension

of R with Noetherian hull RP .
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Proof. The Krull-Akizuki Theorem [33, Theorem 11.7] implies that R/P has �nitely

many valuation overrings, each of which is a DVR. By Theorem 1.3.8 there is a

one-to-one correspondence between these DVRs and the Shannon extensions of R

with Noetherian hull RP . This proves item 1. If R/P is a DVR, then by item 1,

the pullback R + PRP of R/P along the map RP → κ(P ) is the unique quadratic

Shannon extension of R with Noetherian hull RP . This veri�es item 2.

1.4 Classi�cation of non-archimedean Shannon extensions

The �rst classi�cation of non-archimedean quadratic Shannon extensions S that we

give in Theorem 1.4.1 is in function of a given regular local subring R of S. Indeed,

here a prime ideal of an iterated quadratic transform ofR is needed for the description

of the overring S as a pullback. This �rst result follows easily from Theorem 1.3.8.

Later, in Theorem 1.4.5 we give a characterization of certain non-archimedean

quadratic Shannon extensions with principal maximal ideal that occur in an algebraic

function �eld of characteristic 0. In this case, we are able to characterize such rings

in terms of pullbacks without the explicit requirement of a regular local subring of

S. This classi�cation allows us to give an additional source of examples of non-

archimedean quadratic Shannon extensions in Example 1.4.7.

Theorem 1.4.1 (Classi�cation of non-archimedean Shannon extensions). Let R be

a regular local ring with dimR ≥ 2, and let S be an overring of R. Then S is a

non-archimedean quadratic Shannon extension of R if and only if there is a ring V,
a nonnegative integer i and a prime ideal P of an iterated local quadratic transform

Ri of R, such that

(a) V is a rational rank 1 valuation ring of κ(P ) that contains the image of Ri/P

in κ(P ) and has divergent multiplicity sequence over this image, and

(b) S is a pullback of V along the residue map α : (Ri)P → κ(P ).

S = α−1(V) V

(Ri)P κ(P )α

Proof. Suppose S =
⋃

iRi is a non-archimedean quadratic Shannon extension of R.

By Theorem 1.2.7, the Noetherian hull T of S is a local ring, and by Theorem 1.2.5

there is i > 0 and a prime ideal P of Ri such that T = (Ri)P . Since S is a non-

archimedean quadratic Shannon extension of Ri, Theorem 1.3.8 implies there is a

valuation ring V such that (a) and (b) hold for i, P , S and V .
Conversely, suppose there is a ring V , a nonnegative integer i and a prime ideal P

of Ri that satisfy (a) and (b). By Theorem 1.3.8, S is a quadratic Shannon extension

of Ri with Noetherian hull (Ri)P . Thus S is a quadratic Shannon extension of R

and it is non-archimedean by Theorem 1.2.7, since its Noetherian hull is local.

In contrast to Theorem 1.4.1, the pullback description in Theorem 1.4.5 is without

reference to a speci�c regular local subring of S. Indeed, in the proof we construct

one regular local subring using resolution of singularities. We frame our proof in

terms of projective models.
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De�nition 1.4.2. Let F be a �eld and let k be a sub�eld of F . Let t0 = 1 and

assume that t1, . . . , tn are nonzero elements of F such that F = k(t1, . . . , tn). For

each i ∈ {0, 1, . . . , n}, de�ne Di = k[t0/ti, . . . , tn/ti]. The projective model of F/k

with respect to t0, . . . , tn is the collection of local rings given by

X = {(Di)P : i ∈ {0, 1, . . . , n}, P ∈ Spec (Di)}.

For more background on projective models, see [4, Sections 1.6 - 1.8] and [42,

Chapter VI, �17].

If k has characteristic 0, then by resolution of singularities (see for example [9,

Theorem 6.38, p. 100]) there is a projective model Y of F/k such that every regular

local ring in X is in Y , every local ring in Y is a regular local ring, and every local

ring in X is dominated by a (necessarily regular) local ring in Y .

We use the following terminology: by a valuation ring of F/k we mean a valuation

ring V with quotient �eld F such that k is a subring of V . We also recall that a local

ring is an essentially �nitely generated k-algebra if it is a localization of a �nitely

generated k-algebra. Moreover, we state the well known Dimension Formula, since

we are going to apply it in order to prove Theorem 1.4.5.

De�nition 1.4.3. [33, Theorem 15.5, p. 118] Let A be a Noetherian integral domain

and let B an extension ring of A which is an integral domain. We say that the

Dimension Formula holds between A and B if for every prime ideal P of B, calling

Q = P ∩A, we have

ht Q+ tr.degκ(Q)κ(P ) = ht P + tr.degAB

where tr.degAB is the transcendence degree of the quotient �eld of B over the quo-

tient �eld of A.

A ring A is universally catenary if A is Noetherian and every �nitely generated

A-algebra is catenary (all the chains of primes between two prime ideals have the

same lenght).

Theorem 1.4.4. [33, Theorem 15.6, p. 119] A Noetherian ring A is universally

catenary if and only if the Dimension Formula holds between A/P and B for every

prime ideal P of A and every �nitely generated extension ring B of A/P .

When A is an essentially �nitely generated k-algebra and F is its quotient �eld,

by Theorem 1.4.4, the Dimension Formula holds between k and A and hence

dimA+ tr.degkA/mA = tr.degkF.

We prove now Theorem 1.4.5.

Theorem 1.4.5. Let S be a local domain containing as a subring a �eld k of char-

acteristic 0. Assume that dimS ≥ 2 and that the quotient �eld F of S is a �nitely

generated extension of k. Then the following are equivalent:

(1) S has a principal maximal ideal and S is a quadratic Shannon extension of a

regular local ring R that is essentially �nitely generated over k.

(2) There is a regular local overring A of S and a DVR V of (A/mA)/k such that
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(a) tr.degk A/mA + dimA = tr.degk F , and

(b) S is the pullback of V along the residue map α : A→ A/mA.

S = α−1(V) V

A A/mA
α

Proof. (1) =⇒ (2): Let x ∈ S be such that mS = xS. By Theorem 1.2.5, S[1/x] is

the Noetherian hull of S and S[1/x] is a regular ring. Since dimS > 1, the ideal

P =
⋂

k>0 x
kS is a nonzero prime ideal of S [30, Exercise 1.5, p. 7]. Hence S is

non-archimedean. By Theorem 1.2.7, SP is the Noetherian hull of S and hence

SP = S[1/x]. Let A = SP and V = S/P . By Theorem 1.3.2, S is a pullback of

the DVR V with respect to the map A → A/mA. By assumption, S is a quadratic

Shannon extension of a regular local ring R that is essentially �nitely generated over

k. For su�ciently large i, we have A = SP = (Ri)P∩Ri
by Theorem 1.2.4(3). Since

Ri is essentially �nitely generated over R, and R is essentially �nitely generated over

k, we have that A is essentially �nitely generated over k. By the Dimension Formula

(Theorem 1.4.4),

tr.degk A/mA + dimA = tr.degk F .

This completes the proof that item 1 implies item 2.

(2) =⇒ (1): Let P = mA. By item 2b, P is a prime ideal of S, A = SP , P = PSP

and V = S/P . Let x ∈ mS be such that the image of x in the DVR S/P generates

the maximal ideal. Since P = PSP , we have P ⊆ xS. Consequently, mS = xS, and

so S has a principal maximal ideal.

To prove that S is a quadratic Shannon extension of a regular local ring that is

essentially �nitely generated over k, it su�ces by Theorem 1.3.8 to prove:

(i) There is a subring R of S that is a regular local ring essentially �nitely generated

over k.

(ii) A = SP is a localization of R at the prime ideal P ∩R.

(iii) V is a valuation overring of (R+ P )/P with divergent multiplicity sequence.

Since F is a �nitely generated �eld extension of k and A (as a localization of S)

has quotient �eld F , there is a �nitely generated k-subalgebra D of A such that the

quotient �eld of D is F . By item 2a, A/P has �nite transcendence degree over k.

Let a1, . . . , an be elements of A whose images in A/P form a transcendence basis

for A/P over k. Replacing D with D[a1, . . . , an], and de�ning p = P ∩D, we may

assume that A/P is algebraic over κ(p) = Dp/pDp. In fact, since the normalization

of an a�ne k-domain is again an a�ne k-domain, we may assume also that D is an

integrally closed �nitely generated k-subalgebra of A with quotient �eld F . Since D

is a �nitely generated k-algebra, D is universally catenary. Again by the Dimension

Formula we have

dimDp+ tr.degk κ(p) = tr.degk F.

Therefore, item 2a implies

dimDp+ tr.degk κ(p) = dimA+ tr.degk A/P .
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Since A/P is algebraic over κ(p), we conclude that dimDp = dimA.

The normal ring A birationally dominates the excellent normal ring Dp, so A

is essentially �nitely generated over Dp [23, Theorem 1]. Therefore A is essentially

�nitely generated over k.

Since A is essentially �nitely generated over k, the local ring A is in a projective

model X of F/k. As discussed before the theorem, resolution of singularities implies

that there exists a projective model Y of F/k such that every regular local ring in

X is in Y , every local ring in Y is a regular local ring, and every local ring in X is

dominated by a local ring in Y .

Since A is a regular local ring in X, A is a local ring in the projective model Y .

Let x0, . . . , xn ∈ F be nonzero elements such that with Di := k[x0/xi, . . . , xn/xi] for

each i ∈ {0, 1, . . . , n}, we have

Y =
n⋃

i=0

{(Di)Q : Q ∈ Spec (Di)}.

Since S has quotient �eld F , we may assume that x0, . . . , xn ∈ S. Since A is in Y ,

there is i ∈ {0, 1, . . . , n} such that A = (Di)P∩Di
.

By item 2b, V = S/P is a valuation ring with quotient �eld A/P . For a ∈ A,

let a denote the image of a in the �eld A/P . Since S/P is a valuation ring of A/P ,

there exists j ∈ {0, 1, . . . , n} such that

( {xk/xi}nk=0 )(S/P ) = (xj/xi)(S/P ). (1.1)

Notice that xi/xi = 1 /∈ P . Hence at least one of the xk/xi /∈ P , and Equation 1.1

implies xj/xi 6∈ P . Since A = SP and P = PSP , every fractional ideal of S contained

in A is comparable to P with respect to set inclusion. Therefore P ( (xj/xi)S. This

and Equation 1.1 imply that

(x0/xi, . . . , xn/xi)S = (xj/xi)S. (1.2)

Multiplying both sides of Equation 1.2 by xi/xj we obtain

Dj = k[x0/xj , . . . , xn/xj ] ⊆ S.

Let R = (Dj)mS∩Dj
. Since Y is a nonsingular model, R is a regular local ring with

R ⊆ S ⊆ A.

We observe next that A = RP∩R. Since R ⊆ A, we have that A dominates the

local ring A′ := RP∩R. The local ring A′ is a member of the projective model Y , and

every valuation ring dominating the local ring A in Y dominates also the local ring

A′ in Y . Since Y is a projective model of F/k, the Valuative Criterion for Properness

[22, Theorem II.4.7, p. 101] implies no two distinct local rings in Y are dominated

by the same valuation ring. Therefore, A = A′, so that A = RP∩R.

Finally, observe that since V = S/P is a DVR overring of (R + P )/P , the mul-

tiplicity sequence of S/P over (R + P )/P is divergent. By Theorem 1.3.8, S is

a quadratic Shannon extension of R with Noetherian hull A = RP∩R. By Theo-

rem 1.2.7, S is non-archimeean, so the proof is complete.

As an application of Theorem 1.4.5, we describe, for a �nitely generated �eld

extension F/k of characteristic 0, the valuation rings with principal maximal ideal

that arise as quadratic Shannon extensions of regular local rings that are essen-

tially �nitely generated over k, Recall that a valuation ring V of F/k is a divisorial

valuation ring if
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tr.degk V/mV = tr.degk F − 1.

Such a valuation ring is necessarily a DVR (apply, e.g., [1, Theorem 1]).

Corollary 1.4.6. Let F/k be a �nitely generated �eld extension where k has char-

acteristic 0, and let S be a valuation ring of F/k with principal maximal ideal.

1. Suppose rank S = 1. Then there is a sequence {Ri} (possibly �nite) of LQTs

of a regular local ring R essentially �nitely type over k such that S =
⋃

iRi.

This sequence is �nite if and only if S is a divisorial valuation ring.

2. Suppose rank S > 1. Then S is a quadratic Shannon extension of a regular

local ring essentially �nitely generated over k if and only if S has rank 2 and

S is contained in a divisorial valuation ring of F/k.

Proof. For item 1, assume rank S = 1. Hence S is a DVR. By resolution of singu-

larities, there is a nonsingular projective model X of F/k with function �eld F . Let

R be the regular local ring in X that is dominated by S. Let {Ri} be the sequence
of LQTs of R along S. If {Ri} is �nite, then dimRi = 1 for some i, so that Ri

is a DVR. Since S is a DVR between Ri and its quotient �eld, we have Ri = S.

Otherwise, if {Ri} is in�nite, then Proposition 1.2.13 implies S =
⋃

iRi since S is a

DVR. That the sequence is �nite if and only if S is a divisorial valuation ring follows

from [1, Proposition 4].

For item 2, suppose rank S > 1. Assume �rst that S is a Shannon extension

of a regular local ring essentially �nitely generated over k. By Theorem 1.2.5(1),

dimS = 2. By Theorem 1.4.5, S is a contained in a regular local ring A ⊆ F such

that A/mA is the quotient �eld of a proper homomorphic image of S and

tr.degk A/mA + dimA = trdegk F. (1.3)

We claim A is a divisorial valuation ring of F/k. Since A/mA is the quotient

�eld of a proper homomorphic image of S, it follows that

tr.degk A/mA < trdegkF. (1.4)

From equations 1.3 and 1.4 we conclude that dimA ≥ 1. As an overring of the

valuation ring S, A is also a valuation ring. Since A is a regular local ring that is

not a �eld, it follows that A is a DVR. Thus dimA = 1 and equation 1.3 implies

that

tr.degk A/mA = trdegk F − 1,

which proves that A is a divisorial valuation ring.

Finally, suppose rank S = 2 and S is contained in a divisorial valuation ring A

of F/k. Since S is a valuation ring of rank 2 with principal maximal ideal it follows

that mA ⊆ S and S/mA is DVR. Since A is a divisorial valuation ring, we have

tr.degk A/mA + dimA = trdegk F .

As a DVR, A is a regular local ring, so Theorem 1.4.5 implies S is a quadratic

Shannon extension of a regular local ring that is essentially �nitely generated over

k.
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Example 1.4.7. Let k be a �eld of characteristic 0, let x1, . . . , xn, y1, . . . , ym be

algebraically independent over k, and let

A = k(x1, . . . , xn)[y1, . . . , ym](y1,...,ym).

Let α : A → k(x1, . . . , xn) be the canonical residue map. We show that there is a

one-to-one correspondence between the DVRs of k(x1, . . . , xn)/k and the quadratic

Shannon extensions S of regular local rings that are essentially �nitely generated

over k, have Noetherian hull A, and have a principal maximal ideal.

For every DVR V of k(x1, . . . , xn)/k, the ring S = α−1(V ) is by Theorem 1.4.5 a

quadratic Shannon extension of a regular local ring that is essentially �nitely gener-

ated over k. As in the proof that statement 2 implies statement 1 of Theorem 1.4.5,

the Noetherian hull of S is A.

Conversely, suppose S is a k-subalgebra of F with principal maximal ideal such

that S is a quadratic Shannon extension of a regular local ring that is essentially

�nitely generated over k and S has Noetherian hull A. As in the proof that item 1

implies item 2 of Theorem 1.4.5, there is a DVR V of k(x1, . . . , xn)/k such that

S = α−1(V ).

Theorem 1.4.5 concerns quadratic Shannon extensions of regular local rings that

are essentially �nitely generated over k. In Example 1.4.8 we describe a quadratic

Shannon extension of a regular local ring R in a function �eld for which R is not

essentially �nitely generated over k.

Example 1.4.8. Let F = k(x, y, z), where k is a �eld and x, y, z are algebraically

independent over k. Let τ ∈ xk[[x]] be a formal power series in x such that x and τ

are algebraically independent over k. Set y = τ and de�ne V = k[[x]]∩k(x, y). Then
V is a DVR on the �eld k(x, y) with maximal ideal xV and residue �eld V/xV = k.

Let V (z) = V [z]xV [z]. Then V (z) is a DVR on the �eld F with residue �eld k(z),

and V (z) is not essentially �nitely generated over k. Let R = V [z](x,z)V [z]. Notice

that R is a 2-dim RLR. The pullback diagram of type �
∗

S = α−1(k[z]zk[z]) k[z]zk[z]

V (z) k(z)α

de�nes a rank 2 valuation domain S on F that is by Theorem 1.4.1 a quadratic

Shannon extension of R. For each positive integer n, de�ne Rn = R[ x
zn
](z, x

zn
)R[ x

zn
].

Then S =
⋃

n≥1Rn.

1.5 Quadratic Shannon extensions and GCD domains

As an application of the pullback description of non-archimedean quadratic Shan-

non extensions given in Sections 1.3 and 1.4, we show in Theorem 1.5.2 that a

quadratic Shannon extension S is a coherent domain, a GCD domain or a �nite

conductor domain if and only if S is a valuation domain. We extend this fact to all

the quadratic Shannon extensions S, by applying structural results for archimedean

quadratic Shannon extensions from [25].
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De�nition 1.5.1. An integral domain D is:

1. a �nite conductor domain if for elements a, b in the �eld of fractions of D, the

D-module aD ∩ bD is �nitely generated. ([34])

2. a coherent domain if every �nitely generated ideal is �nitely presented.

3. a GCD domain if for all a, b ∈ D, aD∩bD is a principal ideal of D [14, page 76

and Theorem 16.2, p.174].

Chase [7, Theorem 2.2] proves that an integral domain D is coherent if and only

if the intersection of two �nitely generated ideals of D is �nitely generated. Thus a

coherent domain is a �nite conductor domain. It is clear from the de�nitions that

also a GCD domain is a �nite conductor domain.

Examples of GCD domains and �nite conductor domains that are not coherent

are given by Glaz in [16, Example 4.4 and Example 5.2] and by Olberding and

Saydam in [36, Prop. 3.7]. Every Noetherian integral domain is coherent, and a

Noetherian domain D is a GCD domain if and only if it is a UFD. Noetherian

domains that are not UFDs are examples of coherent domains that are not GCD

domains.

Theorem 1.5.2. Let S be a quadratic Shannon extension of a regular local ring.

The following are equivalent:

1. S is coherent.

2. S is a GCD domain.

3. S is a �nite conductor domain.

4. S is a valuation domain.

Proof. It is true in general that if S is a valuation domain, then S satis�es each

of the �rst 3 items. As noted above, if S is coherent or a GCD domain, then S is

a �nite conductor domain. To complete the proof of Theorem 1.5.2, it su�ces to

show that if S is not a valuation domain, then S is not a �nite conductor domain.

Speci�cally, we assume S is not a valuation domain and we consider three cases. In

the non archimedean case we use the pullback description of S to show that if S is

a �nite conductor domain, then it is a valuation domain. In the other two cases,

we �nd a pair of principal fractional ideals of S whose intersection is not �nitely

generated.

Case 1: S is non-archimedean. By Theorem 1.3.2, there is a prime ideal Q of S

and a rational rank 1 valuation ring V = S/Q of κ(Q) such that SQ is the Noetherian

hull of S and S is the pullback of V along the residue map α : SQ → κ(Q).

S = α−1(V) V

SQ κ(Q)α

We use the following argument given by Brewer and Rutter in [6, Prop. 2] to

show that if S is a �nite conductor domain, then T = SQ is a valuation domain:

let a, b ∈ S be nonzero. It su�ces to prove that either aS ⊆ bS of bS ⊆ aS. Now
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aS∩bS ⊇ aQ∩bQ, and aQ∩bQ is a nonzero ideal in SQ. Since S is a �nite conductor

domain, aS ∩ bS is a �nitely generated ideal of S. Nakayama's lemma implies that

aS∩bS 6= aQ∩bQ. Choose y ∈ (aS∩bS)\aQ∩bQ. Write y = (d1+p1)a = (d1+p2)b

with d1, d2 ∈ S and p1, p2 ∈ Q. One of the elements d1 and d2 is not in Q, say d1 /∈ Q.

Since d1 + p1 /∈ Q, d1 + p1 is a unit in SQ. Therefore

a = ( d1 + p1)
−1(d2 + p2)b ∈ bSQ and aSQ ⊆ bSQ

It follows that SQ is a valuation domain. Since S/Q and SQ are valuation rings

and S/Q has quotient �eld SQ/Q, it follows that S is a valuation domain by [10,

Theorem 2.4(1)].

Case 2: S is archimedean, but not completely integrally closed. By Theo-

rem 1.2.5, dimS ≥ 2. We claim that mS is not �nitely generated as an ideal of S.

Since dimS > 1, if mS is a principal ideal, then
⋂

im
i
S is a nonzero prime ideal of

S, a contradiction to the assumption that S is archimedean. Thus mS is not prin-

cipal. By [25, Proposition 3.5], this implies m2
S = mS . From Nakayama's Lemma it

follows that mS is not �nitely generated. Since S is not completely integrally closed,

there is an almost integral element θ over S that is not in S. By [25, Corollary 6.6],

mS = θ−1S ∩ S.

Case 3: S is archimedean and completely integrally closed. By Theorem 1.2.5,

dimS ≥ 2. By Theorems 1.2.5 and 1.2.11, S = T ∩ W , where W is the rank 1

nondiscrete valuation ring with associated valuation w(−) as in De�nition 1.2.6 and

T is a UFD that is a localization of S. Since
∑

n≥0w(mn) < ∞ by Theorem 1.2.7,

and since mnS is principal and generated by a unit of T for n� 0, the w-values of

units of T generate a non-discrete subgroup of R.
Since S is archimedean, Theorem 1.2.7 implies T is a non-local UFD. Therefore

there exist elements f, g ∈ S that have no common factors in T . As in Case 1, we

consider I = fS ∩ gS. Since S = T ∩W , it follows that

I = (fT ∩ gT ) ∩ (fW ∩ gW )

= fT ∩ gT ∩ {a ∈W | w(a) ≥ max{w(f), w(g)}}.

Assume without loss of generality that w(f) ≥ w(g).

For a ∈ I, write a = ( a
f
)f in S and consider w(a). Since a

f
is divisible by g in T ,

it is a non-unit in T , and thus it is a non-unit in S. Since W dominates S, it follows

that w( a
f
) > 0 and thus w(a) > w(f).

We claim that mSI = I. Since the w-values of the units of T generate a non-

discrete subgroup of R, for any ε > 0, there exists an unit x in T with 0 < w(x) < ε.

Then for a ∈ I and for some x with 0 < w(x) < w(a) − w(f), we have a
x
∈ I and

thus a ∈ mSI. Since mSI = I and I 6= (0), Nakayama's Lemma implies that I is not

�nitely generated.

In every case, we have constructed a pair of principal fractional ideals of S whose

intersection is not �nitely generated. We conclude that if S is not a valuation domain,

then S is not a �nite conductor domain.
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Chapter 2

Local monoidal transforms and

GCD domains

2.1 Introduction

A prime ideal p of a regular local ring R is said a regular prime if R/p is again

a regular local ring (i.e. p is generated by regular parameters). Let (R,m) be a

regular local ring and let p be a regular prime ideal of R with ht p ≥ 2. Let (R1,m1)

be a local ring on the blowup Proj R[pt] of p such that R1 dominates R, that is,

m1 ∩ R = m. Let x ∈ p \ p2 be such that R1 is a localization of R[ p
x
] at a maximal

ideal m1. The ring

R1 = R
[
p

x

]

m1

is called a local monoidal transform of R.

In his paper [38], David Shannon discussed several properties of sequences of

local monoidal transforms focusing on the parallelism between the algebraic point

of view of regular local rings and its global geometric interpretation of projective

models.

A useful tool for the investigation on local monoidal transforms is the canonical

map Spec R1 → Spec R sending a prime ideal Q of R1 to its contraction Q∩R. One

property of interest is the biregularity of such map at one prime ideal of R1.

De�nition 2.1.1. Given an extension of integral domains A ↪→ B, we say that the

map Spec B → Spec A is biregular at a prime ideal Q ⊆ B if BQ = AQ∩A.

We record in Proposition 2.1.2 well known properties of R1 and of the map

Spec R1 → Spec R. The references for them are [38, Section 2] and [2, Section 1].

Proposition 2.1.2. Assume notation as above. Then:

1. R1 is a regular local ring.

2. pR1 = xR1 is a height one prime ideal of R1.

3. xR1 ∩ R = p and (R1)xR1
is the order valuation ring de�ned by the powers of

p.

4. R1[1/x] is a localization of R. Indeed R1[1/x] = R[1/x].
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5. The map Spec R1 → Spec R is biregular at every prime ideal q of R1 such that

xR1 * q. In particular, if q is a height one prime of R1 other than xR1, then

q ∩R is a height one prime of R, and Rq∩R = (R1)q.

The properties of R1 given by Proposition 2.1.2 are often used inductively to

study sequences of local monoidal transform.

De�nition 2.1.3. Let {(Rn,mn)}n∈N be an in�nite directed sequence of local monoidal

transforms of an RLR R, that is, Rn+1 ∈ Proj Rn[pnt], where pn is a regular

prime ideal of the RLR Rn and the inclusion map Rn ↪→ Rn+1 is a local map

(i.e. mn ⊆ mn+1).

Since we are interested in studying the ideal theoretic properties of an in�nite

union of such rings, we assume all the ring (Rn,mn) to have the same dimension

d ≥ 3. The in�nite directed union S =
⋃

n∈NRn is, like in the "quadratic case", a

local integrally closed overring of R with maximal ideal mS =
⋃

n∈Nmn. We call S

a monoidal Shannon extension of R.

In [25], the authors call an in�nite directed union of local quadratic transform of

an RLR R a Shannon extension of R.

As said in Chapter 1, here we distinguish such class of rings, that we call quadratic

Shannon extensions, from the very larger class of rings of monoidal Shannon exten-

sions.

While there are many valuation overrings that birationally dominatesR which are

not quadratic Shannon extension (for instance the unique sequence of local quadratic

transform of R along a valuation overring of rank at least 3 yields to a Shannon

extension which is not a valuation ring [25, Theorem 8.1]), under certain hypothesis,

easily ful�lled by RLRs arising in a geometric context, every valuation overring

birationally dominating R is a monoidal Shannon extension.

This is one of the most important result of Shannon's paper [38] and we state it

for completeness.

Theorem 2.1.4. Let (R,m) be an excellent regular local ring of dimension greater

than one such that one of the following conditions hold:

1. The residue �eld R/m has characteristic zero (in any dimension of R).

2. R is equicharacteristic of dimension at most 3.

Then every valuation ring V that birationally dominates R is a union of local monoidal

transform of R.

To prove it Shannon used the notion of a strongly principalizable ring extension.

Given an extension of rings R ⊆ V , we say that it is principalizable if, for every ideal

I ⊆ R, IRt is principal in some iterated monoidal transform Rt of R birationally

dominated by V . An extension R ⊆ V is strongly principalizable if, for any iterated

local monoidal transform Rn of R birationally dominated by V , the extension Rn ⊆
V is principalizable.

Shannon proved that if V is a valuation overring that birationally dominates R

and the extension R ⊆ V is strongly principalizable, then V is a directed union of

local monoidal transform of R.

It was previously known that an extension R ⊆ V is often strongly principaliz-

able. In particular for an excellent regular local ring R it was proved by Hironaka
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in [28] when the residue �eld of R has characteristic zero and by Abhyankar in [2]

in the equicharacteristic case if the dimension of R is at most 3.

Hence, in a ring theoretic language, assuming "su�ciently good" hypothesis on R

we can say that every valuation overring that birationally dominates R is a monoidal

Shannon extension of R. The converse is clearly not true, as Shannon itself men-

tioned providing the examples 1.2.3. Such examples are quadratic Shannon exten-

sions but, since a local quadratic transform can be factorized in a �nite number of

local monoidal transforms, it turns out that a quadratic Shannon extension is also

a monoidal Shannon extension.

An interesting problem is now to characterize with ideal-theoretic tools the

monoidal Shannon extension which are not quadratic extensions. It seems to be

an hard and wide open problem. In the monoidal setting, we lost good properties

of quadratic transform like the uniqueness of a sequence along a valuation overring.

Indeed, given a valuation ring V birationally dominating a RLR R, we may have

some possible di�erent "directions" of transforming along V .

In this chapter we provide examples of classes of monoidal non-quadratic Shannon

extensions and we study their properties, focusing sometimes on the case in which

R has dimension 3.

We prove here many of the results holding in this case in the more general context

where dimRn = d and ht pn = d− 1 for every n.

The most general setting for monoidal transform is when ht pn = 2 for every

n. Such transforms are called by Shannon elementary monoidal transform since any

monoidal transform can be factorized in elementary monoidal tranforms (see [38,

Remark 2.5]).

Elementary monoidal transforms represent minimal possible birational extensions

of RLRs. Indeed, if R1 is an elementary monoidal transform of R and there exists

one regular local ring R′ such that R ⊆ R′ ⊆ R1 and both inclusion are birational,

then either R = R′ or R1 = R′ [38, Proposition 3.7].

Hence we can de�ne di�erent classes of monoidal Shannon extensions in the

following way: call Mi(R) the set of the monoidal Shannon extensions of R such

that ht pn ≥ i for every n where 2 ≤ i ≤ d = dimR.

What said until now implies that there is an inclusion

Mi(R) ⊆Mi−1(R).

With this notation, the set of quadratic Shannon extensions is Md(R) and the set

of the all possible monoidal Shannon extensions isM2(R).

In the study of monoidal Shannon extensions we are going to focus on the GCD

property of such rings (see De�nition 1.5.1). In the last section of Chapter 1 we

showed that a quadratic Shannon extension of a regular local ring is a GCD domain

if and only if it is a valuation ring. In the monoidal case we �nd many Shannon

extensions which are GCD domain but not valuation domain.

In order to prove this, in Section 2.2 we give some criteria that make an integral

domain a GCD domain.

In Section 2.3, we apply the results of Section 2.2 to a speci�c example of a

monoidal non quadratic Shannon extension.

In Section 2.4, after some general results, we characterize a monoidal Shannon

extension S =
⋃

n∈NRn ∈ Md−1(R) in function of the behavior of the prime ideals
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pn. We prove that an in�nite chain of such primes has as a union a prime ideal of

S and the localization of S at this prime ideal is a quadratic Shannon extension of

a regular local ring of dimension d− 1.

In Section 2.5, we describe a speci�c Noetherian overring of S which can be built

under some hypothesis on the chains of primes realizing S.

We apply the previous results in Section 2.6 to give other examples of classes of

monoidal Shannon extensions and study their basic properties.

In Section 2.7 we extend what proved in Sections 2.2 and 2.3 to characterize the

GCD domains among a class of monoidal Shannon extensions.

Many results of this chapter have been obtained in collaboration with W. Heinzer,

B. Olberding and M. Toeniskoetter.

2.2 GCD domains

We recall that an integral domain D is a GCD domain if for all a, b ∈ D, aD ∩ bD

is a principal ideal of D. (See De�nition 1.5.1)

The motivation for the results in this section is the following: in Theorem 1.5.2 is

proved that a quadratic Shannon extension of a regular local ring is a GCD domain

if and only if it is a valuation domain.

In Section 2.3, and later in Section 2.7, we will show that for monoidal Shannon

extensions the situation is more subtle. We construct monoidal Shannon exten-

sions that are GCD domains but not valuation domains. The construction gives a

monoidal Shannon extension S such that there exist nonassociate prime elements

x, z ∈ S such that SxS , SzS and S[1/xz] are GCD domains. These properties, along

with the results we prove in this section, imply then that S is a GCD domain.

Let x be a nonzero prime element of an integral domain D. We prove in Theo-

rem 2.2.5 that D is a GCD domain if and only if DxD and D[1/x] are GCD domains.

Corollary 2.2.6 generalizes this fact to �nitely many nonassociate prime elements and

it will imply that the monoidal Shannon extension S in Construction 2.3.1 is a GCD

domain.

The survey paper of Dan Anderson [5] and the book of Robert Gilmer [14] are

good references for GCD domains.

All the following results are needed to prove the main theorem of this section,

namely Theorem 2.2.5. In this section we will put ourselves in a general context,

working with an integral domain D instead of speaking of Shannon extensions.

Lemma 2.2.1. Let xD be a nonzero principal prime ideal of an integral domain D.

Then D = D[1/x] ∩ DxD, and yD = yD[1/x] ∩ yDxD for every y in the �eld of

fractions of D.

Proof. Clearly D ⊆ D[1/x] ∩ DxD. If y ∈ D[1/x], then xny ∈ D for some integer

n ≥ 0. If y /∈ D, then n ≥ 1, and we can choose n minimal such that xny ∈ D. Then

xny = a ∈ D \ xD. If also y ∈ DxD, then y = b/c, where b ∈ D and c ∈ D \ xD.

Then

y =
a

xn
=

b

c
=⇒ ac = xnb ∈ xD.

This contradicts the fact that xD is prime and a and c are not in xD. We conclude

that D = D[1/x] ∩DxD. Since multiplication by y distributes over the intersection,

the second equality also holds.
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Proposition 2.2.2. Let x be a nonzero prime element of an integral domain D with

quotient �eld F , and let P =
⋂

n∈N xnD. Then:

1. P is a prime ideal, xP = P , every prime ideal of D properly contained in xD

is contained in P , and DxD/PDxD is a DVR.

2. Let I be an ideal of D such that I * PD[1/x] = P , and ID[1/x] ∩D = I. If

ID[1/x] is a principal ideal of D[1/x], then I is a principal ideal of D.

3. Let J be a proper principal ideal in D[1/x] such that J * P . Then J ∩D is a

principal ideal in D and there exists b ∈ D \ xD such that J ∩D = bD

4. Let I be an ideal of D such that ID[1/x] is a �nitely generated ideal of D[1/x].

Then (D :F I)DxD = (DxD :F IDxD).

Proof. The assertions in item 1 are well known, see [30, Exercise 1.5, p. 7].

The assumption in item 2 that I = ID[1/x] ∩D is equivalent to the statement

that x is a regular element on D/I. Every element in ID[1/x] has the form a/xn,

where a ∈ I for some n ≥ 0. Let y ∈ I be such that yD[1/x] = ID[1/x]. Since

I * P , y /∈ xD. It follows that x is regular on D/yD, for if a ∈ D and ax ∈ yD,

then ax = yb, and y /∈ xD implies b ∈ xD. Therefore

yD = yD[1/x] ∩ D = ID[1/x] ∩D = I.

For item 3, �rst notice that P is a common ideal of D and D[1/x]. Then, since

J * P and J is a proper ideal of D[1/x], J ∩ D * xD. Let a ∈ D be such that

aD[1/x] = J . Then a /∈ P , and for some integer n ≥ 0, we have a/xn = b ∈ D \ xD.

It follows that bD[1/x] = J , and bD = J ∩D.

For item 4, let I be an ideal of D such that ID[1/x] is a �nitely generated ideal

of D[1/x]. By Lemma 2.2.1, we have D = DxD ∩D[1/x]. Thus

(D :F I) = (DxD :F IDxD) ∩ (D[1/x] :F ID[1/x]).

Since localization commutes with �nite intersections, this implies

(∗) (D :F I)DxD = (DxD :F IDxD) ∩ (D[1/x] :F ID[1/x])DxD.

By item 1, every prime ideal of D properly contained in xD is contained in P , so

D[1/x]DxD = DP . Therefore,

(D[1/x] :F ID[1/x])DxD = (D[1/x] :F ID[1/x])D[1/x]DxD

= (D[1/x] :F ID[1/x])DP

= (DP :F IDP ),

where the last equality follows from the fact that ID[1/x] is a �nitely generated ideal

of D[1/x] and DP is a localization of D[1/x]. Therefore, by (∗),

(D :F I)DxD = (DxD :F IDxD) ∩ (DP :F IDP ).

Since DxD ⊆ DP , this implies

(D :F I)DxD = (DxD :F IDxD).
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Remark 2.2.3. Assume notation as in Proposition 2.2.2.

(1) If P 6= 0, then P is not �nitely generated as an ideal of D. It may happen

that PD[1/x] is a principal ideal of D[1/x]. Thus the assumption in Proposi-

tion 2.2.2(2) that I * P is necessary.

(2) If y ∈ P and y 6= 0, then yD[1/x] ⊆ D, and I = yD[1/x] is a common ideal of

D and D[1/x]. The ideal I is principal as an ideal of D[1/x], but is not �nitely

generated as an ideal of D.

(3) Assume that DxD is a valuation domain. Then DP is a valuation overring of

DxD. It may happen that P is contained in more than one maximal ideal of

D. For instance, let S be the monoidal Shannon extension of Construction

2.3.1, and let D = SxS ∩ SzS . Then xD and zD are distinct maximal ideals of

D and
⋂

n∈N xnD = P =
⋂

n∈N znD.

We recall now that a domain D is a �nite conductor if the intersection of any

two principal ideal of D is �nitely generated.

Lemma 2.2.4. If D is a local �nite conductor domain with principal maximal ideal

M , then D is a valuation domain.

Proof. Let x ∈ D such that M = xD, and let P =
⋂

i>0 x
iD. By Proposi-

tion 2.2.2(1), P is a prime ideal of D. Then DP = D[1/x] and PD[1/x] = P .

Thus we have a commutative diagram that describes D as a pullback:

D� _

��

// // D/P
� _

��

DP
// // DP /P

(2.1)

Since D is a �nite conductor domain, it follows from [12, Proposition 4.3] that DP is

a valuation domain. Gabelli and Houston mentioned in [12] that the proof proceeds

as in the proof given by Brewer and Rutter in [6, Prop. 2]. This ideal-theoretic proof

has been described while proving case 1 of Theorem 1.5.2. By Proposition 2.2.2(1),

D/P is a DVR. Since D/P and DP are valuation rings and D/P has quotient �eld

DP /P , it follows that D is a valuation domain [10, Theorem 2.4(1)].

Theorem 2.2.5. Let xD be a nonzero prime ideal of an integral domain D. Then

D is a GCD domain if and only if DxD and D[1/x] are GCD domains.

Proof. Since localizations commute with �nite intersections, every localization of a

GCD domain is a GCD domain. Hence if D is a GCD domain, then DxD and D[1/x]

are GCD domains.

Conversely, assume that DxD and D[1/x] are GCD domains. Since every GCD

domain is a �nite conductor domain, Lemma 2.2.4 implies that DxD is a valuation

domain. Let F denote the quotient �eld of D. Let a, b be nonzero elements in D,

and let I = aD ∩ bD. It su�ces to prove that I is principal.

Let J = (a, b)D. Since J is �nitely generated and DxD is a valuation domain,

we have by Proposition 2.2.2(4)

JJ−1DxD = JDxD(DxD : JDxD) = DxD.
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Thus JJ−1 6⊆ xD. Choose q ∈ J−1 such that qJ = (qa, qb)D 6⊆ xD. Either qa /∈ xD

or qb /∈ xD, and qI = qaD ∩ qbD is principal if and only if I is principal. Replacing

a, b with qa, qb and relabeling if necessary, we may assume a /∈ xD. We may also

assume that b 6= 0. Then J−1 = 1
a
D ∩ 1

b
D, and abJ−1 = I. To prove that I is

principal it su�ces to show that K := aJ−1 is principal. Now

K = aJ−1 = D ∩ a
b
D = {c ∈ D | cb ∈ aD} = aD :D b.

Notice that if xy ∈ K with y ∈ D, then y ∈ K. To see this, assume that xyb = az,

where z ∈ D. Then a /∈ xD and, since xD a prime ideal, z ∈ xD. Hence yb ∈ aD.

From this, it follows K = KD[1/x] ∩D.

Denote P =
⋂

i>0 x
iD. Then P is a prime ideal by Proposition 2.2.2. Since

a /∈ xD, it follows that a /∈ P , so b ∈ aDP and hence KDP = DP . Therefore

K * P . If K = D, then K is principal and I is principal.

Assume thatK is a proper ideal ofD. ThenKD[1/x]∩D = K implies thatKD[1/x]

is a proper ideal of D[1/x].

Since D[1/x] is a GCD domain, KD[1/x] is a principal ideal of D[1/x]. Propo-

sition 2.2.2(2,3) implies that KD[1/x] ∩D = yD, where y ∈ D \ xD.

Since K = KD[1/x] ∩D, it follows K = yD is principal.

Corollary 2.2.6. Let x = x1 · · ·xr be an element of an integral domain D, where

x1, . . . , xr are nonassociate prime elements of D. If DxiD is a GCD domain for

1 ≤ i ≤ r and D[ 1
x
] is a GCD domain, then D is a GCD domain.

Proof. We proceed by induction on r, where the r = 1 case is given by Theorem 2.2.5.

Assume the hypotheses of the corollary. Since xr /∈ xiD for 1 ≤ i < r, it follows that

D[ 1
x
]xrD[ 1

x
] = D[ 1

x1···xr−1
]xrD[ 1

x1···xr−1
].

Since D[ 1
x
] = D[ 1

x1···xr−1
][ 1
xr
], we have D[ 1

x1···xr−1
] is a GCD domain by Theo-

rem 2.2.5. We conclude by the inductive hypothesis that D is a GCD domain.

The next corollary gives a criterion, based of properties of D[1/x] and DxD, to

see whether D is a Bezout domain. We recall that a Bezout domain is an integral

domain such that any �nitely generated ideal is principal and a Prüfer domain is a

domain A such that AP is a valuation domain for every prime ideal P of A. It is a

well known fact that a Prüfer domain is a GCD domain if and only if it is a Bezout

domain. This fact can be seen as a generalization in a non-Noetherian context of

the also well known fact that a Dedekind domain is a PID if and only if it is a UFD.

Corollary 2.2.7. Let xD be a nonzero principal maximal ideal of an integral domain

D. If D[1/x] is a Bezout domain and DxD is a �nite conductor domain, then D is

a Bezout domain.

Proof. Lemma 2.2.4 implies that DxD is a valuation domain. Since xD is a maximal

ideal and D[1/x] is a Bezout domain, Dq is a valuation domain for every prime ideal

q of D. Therefore D is a Prüfer domain. By Theorem 2.2.5, D is a GCD domain.

Therefore D is a Bezout domain.
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2.3 A GCD monoidal Shannon extension

In this section we give a �rst example of a monoidal Shannon extension of a 3-

dimensional RLR which is neither a quadratic Shannon extension nor a valuation

domain. We discuss some properties of this ring, including the property of being a

GCD domain.

Construction 2.3.1. Let (R,m) be a 3-dimensional regular local ring with maximal

ideal m = (x, y, z)R. De�ne

R1 = R
[y
x

]

(x, y
x
,z)R[ y

x
]
,

and

R2 = R1

[ y

xz

]

(x, y

xz
,z)R1[

y

xz
]
.

Thus R1 is the local monoidal transform of R obtained by blowing up the prime

ideal (x, y)R, dividing by x, and localizing at the maximal ideal generated by x, y/x

and z; and R2 is the local monoidal transform of R1 obtained by blowing up the

prime ideal ( y
x
, z)R1, dividing by z, and localizing at the maximal ideal generated

by x, y
xz

and z.

De�ne R2n+1 and R2n+2 inductively so that R2n+1 is the local monoidal trans-

form of R2n obtained by blowing up the prime ideal (x, y
xnzn

))R2n, dividing by

x, and localizing at the maximal ideal generated by x, y
xn+1zn

and z; and R2n+2

is the local monoidal transform of R2n+1 obtained by blowing up the prime ideal

( y
xn+1zn

, z)R2n+1, dividing by z, and localizing at the maximal ideal generated by

x, y
xn+1zn+1 and z. Call S =

⋃
n∈NRn.

We record properties of S and of the sequence {Rn} in Theorem 2.3.2. Among

other things, we prove that this ring is not Noetherian and admits a unique minimal

Noetherian overring T . We call T the Noetherian hull of S like in the quadratic case.

Theorem 2.3.2. Assume notation as in Construction 2.3.1. Let S =
⋃

n∈NRn, and

let p = yV ∩ S where V = RyR. Then:

1. The maximal ideal of S =
⋃

n∈NRn is mS = (x, z)S and

p =
⋂

n∈N

xnS =
⋂

n∈N

znS

is a non �nitely generated prime ideal of S.

2. The principal ideals xS and zS are nonmaximal prime ideals of S of height 2.

3. S/p is a 2-dimensional RLR that is isomorphic to R/yR. This isomorphism

de�nes 1-to-1 correspondence of the prime ideals of S of height 2 containing p

with the prime ideals of R of height 2, containing y.

4. The localizations SxS and SzS are rank 2 valuation domains, and the map

Spec S → Spec R is not biregular at these two prime ideals.

5. Let q be a prime ideal of S of height 1. If q 6= p, then q is a principal ideal

generated by a prime element f ∈ R such that f 6∈ (x, y)R∪ (y, z)R. It follows

that RfR = Sq.
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6. The map Spec S → Spec R is biregular on the height 2 primes of S containing

y other than xS and zS, and is biregular on all the height 1 primes of S.

7. S∗ = S[ 1
xz
] = T is a 2-dimensional regular Noetherian UFD that is the complete

integral closure of S and the unique minimal Noetherian overring of S.

8. S = T ∩ V1 ∩ V2, where V1 = SxS and V2 = SzS are the valuation rings of

item 2.

9. S is a GCD domain.

Proof. By de�nition y
xizj
∈ p for all i, j ∈ N. Moreover, all the elements of this form

are necessary to generate p. Thus p is non �nitely generated. It is also clear that

p =
⋂

n∈N xnS and p =
⋂

n∈N znS. Hence mn ⊆ (x, z)S for every n ∈ N. This proves
item 1.

For item 2 observe that, since x and z are prime elements in Rn for every n ∈ N,
then they are prime elements in S. Moreover:

(SxS)p = (SzS)p = Sp = V.

By [10, Theorem 2.4], it follows that xS and zS are prime ideals of height 2 and

SxS and SzS are rank 2 valuation domains. The DVR V is the rank 1 valuation

overring of both SxS and SzS .

For item 3, just notice that

R

yR
=

R1

(p ∩R1)
= · · · = Rn

(p ∩Rn)
= · · · = S

p
.

Therefore S/p is a 2-dimensional RLR that is isomorphic to R/yR.

Since xS ∩ R = (x, y)R and zS ∩ R = (y, z)R and R(x,y)R and R(y,z)R are 2-

dimensional RLRs, the map Spec S → Spec R is not biregular at xS and zS. This

proves item 4.

For item 5, let q be a height 1 prime ideal of S with q 6= p. Then q * xS∪zS. By
repeated applications of Proposition 2.1.2(6), the map Spec S → Spec R is biregular

at q, that is Sq = Rq∩R. Since dimSq = 1, q ∩R = fR, where f is a prime element

of R with f /∈ (x, y)R∪ (y, z)R. Repeated applications of Proposition 2.1.2(5) imply

that q = fS.

Item 6 follows from items 4 and 5.

For item 7, Proposition 2.1.2 implies that S[ 1
xz
] is a localization of R. Hence

S[ 1
xz
] is a regular Noetherian UFD. Since R/yR = S/p, we have dimS[ 1

xz
] = 2.

Since y
xizj
∈ S for all i, j ∈ N, S[ 1

xz
] is almost integral over S.

It follows that S∗ = S[ 1
xz
].

If A is a Noetherian overring of S, then 1
xz

is almost integral and therefore integral

over A. Since xz ∈ S ⊆ A, it follows that 1
xz
∈ A, cf. [30, page 10, Theorem 15].

We conclude that S[ 1
xz
] = T is the Noetherian hull of S.

To prove item 8, let
a

xizj
∈ S[

1

xz
] ∩ SxS ∩ SzS ,

where a ∈ S and i ≥ 0 and j ≥ 0 are minimal for such a representation. Then

a ∈ S \ (xS ∪ zS) and xS and zS distinct nonzero principal prime ideals implies

i = 0 = j. Therefore S = T ∩ V1 ∩ V2.

Since T and SxS and SzS are GCD domains, Corollary 2.2.6 implies that S is a

GCD domain. This proves item 9 and completes the proof of Theorem 2.3.2.

36



The rings V1 = SxS and V2 = SzS are playing the role for this monoidal Shannon

extension that is played by the boundary valuation ring V in the case where S

is a quadratic Shannon extension. Indeed, we recall that by Theorem 1.2.5(2) a

quadratic Shannon extension is the intersection of its Boundary valuation ring and

of its Noetherian hull.

Instead considering the limit point of the order valuation rings {Vn} of the se-

quence {Rn} in Construction 2.3.1, that is the ring

V =
⋃

n≥0

⋂

i≥n

Vi = {a ∈ F | ordRi
(a) ≥ 0 for i� 0},

we do not �nd the equality S = T ∩ V . To see this, we can take for instance the

element x/z which is in T and in Vn for all n but it is not in S.

It is possible to prove in another way that S is a GCD domain using its pullback

representation.

Remark 2.3.3. The monoidal Shannon extension S obtained in Construction 2.3.1

is a pullback of the canonical homomorphism S → S/p with respect to the canonical

injection S ↪→ T = S[ 1
xz
] as in the following diagram

S� _

��

// // S/p ∼= R/yR
� _

��

T // // T/p

(2.2)

In the terminology of Evan Houston and John Taylor in [29], Equation 2.2 is a

pullback diagram of type �. This di�ers from a pullback of type �
∗ in that the

integral domain T/p in the lower right of the diagram is not a �eld.

We want to apply the next Theorem to this ring. In [29], the authors de�ne a

generalization of GCD domains. An integral domain D with an overring E is an E-

GCD domain if J−1∩E is principal for every �nitely generated ideal J of D. Notice

that D is a GCD domain if it is an E-GCD domain for E equal to the quotient �eld

of D.

Theorem 2.3.4. [29, Theorem 5.11] Consider the following diagram of type � where

I is a maximal t-ideal of T and T = (I : I).

R� _

��

// // D� _

��

T // // E = T/I

(2.3)

Then, R is a GCD domain if and only if T is a GCD domain, D and E have the same

quotient �eld, D is an E-GCD domain and the natural map U(T )→ U(E)/U(D) is

surjective.

Corollary 2.3.5. The ring S in Construction 2.3.1 is a GCD domain.

Proof. Let F denote the �eld of fractions of S and let F ′ denote the �eld of fractions

of S/p. Then T = (p : p) = {a ∈ F | ap ⊆ p}.
The ideal p is principal in the Noetherian ring T and hence it is a maximal t-ideal.

The rings T and S/p are Noetherian regular UFDs and therefore they are GCD

domains. By permutability of localizations and residue class formations, T/p is a
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localization of S/p with respect to the multiplicative set generated by the image of

xz in S/p.

We claim that S/p is a T/p-GCD domain. Indeed, let J be an ideal of S/p.

The fractional ideal J−1 is principal generated by an element of F ′. Without loss

of generality we may assume J−1 = (1/g)S/p for g ∈ S/p. Hence, if 1/g ∈ T/p,

J−1 ∩ T/p = J−1 and it is principal.

Assume instead 1/g 6∈ T/p and take f ∈ J−1 ∩ T/p, then f = d/g for some

d ∈ gT/p ∩ S/p. Since the images of x and z in S/p are prime elements and they

do not divide g (g is not a unit in T/p), we have gT/p ∩ S/p = gS/p and therefore

f ∈ S/p. It follows that J−1 ∩ T/p = S/p is a principal ideal of S/p and thus S/p is

a T/p-GCD domain.

Finally, the multiplicative group U(T ) of units of T maps surjectively onto the

group of units U(T/p) of T/p. With U(S/p) the group of units of S/p, it follows that

the natural map U(T ) → U(T/p)/U(S/p) is surjective. Now Theorem 2.3.4 implies

that S is a GCD domain.

2.4 Generalities about directed unions of local monoidal

transforms

In this section we give a more systematic and detailed study of the ring structure

of a monoidal Shannon extension. Our setting is the following: let {(Rn,mn)}n∈N
be an in�nite directed sequence of local monoidal transforms of a regular local ring

R where Rn+1 = Rn[pn/xn] for every n. Assume dimRn = d ≥ 3 for all n and let

S =
⋃

n∈NRn. Also let mS =
⋃

n∈Nmn denote the unique maximal ideal of S.

We start by looking at properties correspondent to those proved for quadratic

Shannon extensions in Theorem 1.2.4. In such theorem it is proved that a quadratic

extension is Noetherian if and only if is a DVR. We are going to prove that a monoidal

extension is Noetherian if and only if it is a RLR of dimension less than dimR.

Proposition 2.4.1. Let S be a monoidal Shannon extension of a regular local ring

R. If mS is �nitely generated, then it is minimally generated by at most d − 1

elements. Moreover, any minimal generating set of mS is a regular sequence on S

and part of a regular system of parameters of Rn for n� 0.

Proof. Take a minimal generating set for the maximal ideal mS of S, say mS =

(x1, . . . , xt), and take n ≥ 0 such that x1, . . . , xt ∈ Rn. The inclusion mn ⊆ mS

induces a map mn/m
2
n → mS/mnmS = mS/m

2
S . Let x1, . . . , xt denote the images

of x1, . . . , xt in mn/m
2
n. By Nakayama's Lemma, the images of x1, . . . , xt in mS/m

2
S

are linearly independent over S/mS , hence x1, . . . , xt are linearly independent over

the sub�eld Rn/mn. We conclude that x1, . . . , xt are part of a regular system of

parameters for Rn, and in particular t ≤ d.

Moreover, x1, . . . , xt is a regular sequence in S. To see this, let 0 ≤ k < t and

let axk+1 ∈ (x1, . . . , xk)S for some a ∈ S. Write axk+1 =
∑k

i=1 cixi for some

c1, . . . , ck ∈ S. Take n ≥ 0 such that x1, . . . , xk+1, c1, . . . , ck, a ∈ Rn, so that

axk+1 ∈ (x1, . . . , xk)Rn. Since x1, . . . , xk+1 are part of a regular system of parame-

ters in Rn and hence a regular sequence on Rn, it follows that a ∈ (x1, . . . , xk)Rn ⊆
(x1, . . . , xk)S. We conclude that x1, . . . , xt is a regular sequence in S.

38



Finally, since Rn+1 is a proper birational extension essentially of �nite type of

Rn, Zariski's Main Theorem implies that ht mnRn+1 < d for all n ≥ 0, so since

dimRn = d for all n ≥ 0, it follows that mnRn+1 ( mn+1 for all n ≥ 0. If t = d,

then mn = (x1, . . . , xt)Rn for n � 0, contradicting this fact, so we conclude that

t ≤ d− 1.

Corollary 2.4.2. Let S be a monoidal Shannon extension of a regular local ring R.

If S is Noetherian, then S is a regular local ring of dimension at most dimR− 1.

Proof. Since mS is �nitely generated, Proposition 2.4.1 implies that mS is minimally

generated by a regular sequence on S, so S is a regular local ring. Since mS is

minimally generated by at most dimR−1 elements, Krull's Altitude Theorem implies

that dimS ≤ dimR− 1.

Example 2.4.3. It is possible to construct a Noetherian monoidal Shannon exten-

sion of a RLR (R,m) under the assumption of the existence of a DVR V that bira-

tionally dominates R but it is not a prime divisor over R (we recall that a prime di-

visor is a valuation overring birationally dominating R such that trdeg(V/mV , R/m)

is equal to dimR − 1.). For instance take R = k[x, y](x,y) where y ∈ xk[[x]] is a

formal power series in x and y, x are algebraically independent over k. Then, the

DVR V = k[[x]] ∩ k(x, y) has residue �eld k and hence is not a prime divisor over

R. Consider the sequence (Rn,mn) of local quadratic transform of R along V . By

Proposition 1.2.13, V =
⋃

n∈NRn. Take some indeterminates z1, . . . , zn over the

quotient �eld of R and consider the sequence of rings

Rn[z1, . . . , zn](mn,z1,...,zn).

Each ring is a local monoidal transform of the previous ring obtained localizing the

blow up of the prime ideal pn = mn. The directed union of this sequence is the RLR

V [z1, . . . , zn](x,z1,...,zn).

The example obtained in Construction 2.3.1 can be seen as a prototype to study

the structure of a class of monoidal Shannon extension. In that particular sequence

of local monoidal transforms we see that the prime ideals pn form two di�erent

chains, which are

p0 ⊆ p2 ⊆ p4 ⊆ · · · ⊆
∞⋃

k≥0

p2k = xS

and

p1 ⊆ p3 ⊆ p5 ⊆ · · · ⊆
∞⋃

k≥0

p2k+1 = zS.

The directed union of each chain is a prime ideal of the union ring S. We prove

that this is a general fact for a monoidal Shannon extension and we explain how

the structure of these rings can be understood looking at the chains formed by the

prime ideals pn. In most of the cases we will assume the locus ideals to form a �nite

number of chains.

The terminology of the following de�nition is inspired by the concept of "funda-

mental locus" of a birational transformation used by Zariski in [40].
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De�nition 2.4.4. We call the prime ideals pn, the locus ideals of the sequence

{(Rn,mn)}n∈N and the ideal L =
∑∞

n≥0 pn ⊆ S, the locus ideal of S. Notice that L
is a proper ideal of S.

De�nition 2.4.5. Let {pni
}i∈N a family of locus ideals of the sequence {Rn}n∈N.

The family {pni
}i∈N is a chain if pni

⊆ pni+1
for every i. An in�nite chain is said

minimal if for all but �nitely many m 6∈ {ni}i∈N, the ideal pm *
⋃

i∈N pni
.

Theorem 2.4.6. Let {pni
}i∈N be an in�nite chain of locus ideals of the sequence

{Rn}n∈N and for every n, take xn ∈ pn such that pnS = xnS. Denote Q =
⋃

i∈N pni
.

Then:

1. Q is a prime ideal of S and it is maximal if and only if Q ∩ Rni
= mni

, for

in�nitely many i.

2. Q is either principal or it is not �nitely generated.

Proof. For item 1, take ab ∈ Q =
⋃

i∈N pni
. Then there exists ni such that ab ∈ pni

and hence either a or b is in pni
⊆ Q and hence Q is prime.

Assume Q ∩ Rni
= mni

for in�nitely many i. Since for every n, mn ⊆ mn+1, we

have Q =
⋃∞

n≥0mn = mS . Conversely if Q is maximal, Q ∩Rni
= mni

for every i.

For item 2, since pni
S = xni

S for some xni
∈ pni

, we have that Q =
⋃

i∈N pni
=⋃

i∈N xni
S is an ascending union of principal ideals. It follows that Q it is �nitely

generated if and only if it is principal.

De�nition 2.4.7. Let {pni
}i∈N an in�nite chain of locus ideals of the sequence

{Rn}n∈N. We call the prime ideal Q =
⋃

i∈N pni
a chain-prime ideal.

We apply by induction Proposition 2.1.2(4) to study the biregularity of the map

Spec S → Spec R. Next result will be an important tool for our further investigation.

Lemma 2.4.8. Let S be a monoidal Shannon extension of R. Let P be a prime

ideal of S which contains only �nitely many locus ideals pn (for instance a chain-

prime ideal). Then, there exists N ≥ 0, which depends on P , such that the map

Spec S → Spec RN is biregular at P .

Proof. Take N such that pn * P ∩Rn for all n ≥ N . Applying Proposition 2.1.2(4)

with an inductive argument, we get (RN )P∩RN
= (Rn)P∩Rn for all n ≥ N and this

gives SP = (RN )P∩R.

In the introduction of this chapter we de�ned the set Mi(R) consisting of the

monoidal Shannon extensions of R such that ht pn ≥ i for every n. Set, as before,

d = dimRn for every n. As application of Proposition 2.4.8, we can bound the

dimension of the valuation rings belonging to each setMi(R).

Proposition 2.4.9. Let S ∈ Md−i(R) be a monoidal Shannon extension of R and

let Q be a prime ideal of S which contains in�nitely many locus ideal pn. then,

ht Q ≥ dimS − i.
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Proof. Assume there is an ascending chain of prime ideals of S,

Q ( Q1 ( . . . ( Qi ( mS ,

of lenght i+ 1 between Q and mS . Since all the inclusions are strict, we can �nd a

su�ciently large n such that

pn ⊆ Q ∩Rn ( Q1 ∩Rn ( . . . ( Qi ∩Rn ( mS ∩Rn = mn.

But this contradicts the assumption of S ∈ Md−i(R), since in this case ht pn ≥
d− i.

Theorem 2.4.10. Let V ∈Md−i(R) be a valuation ring which is a monoidal Shan-

non extension of R. Then,

dimV ≤ i+ 2

Proof. First assume dimV = 1. In this case, by Theorem 1.2.5(1) V ∈ Md(R) is a

quadratic Shannon extension.

Thus assume dimV ≥ 2 and call Q the height two prime ideal of V . The ring

VQ is a two dimensional valuation domain and therefore it is not a localization of Rn

for any n. Hence by Proposition 2.4.8, Q must contain in�nitely many locus ideals

pn. By Proposition 2.4.9, 2 = ht Q ≥ dimV − i, and hence dimV ≤ i+ 2.

This Theorem generalizes the fact that a valuation ring which is a quadratic

Shannon extensions has dimension at most two (Theorem 1.2.5(1)). We can use an

application of it to show that the inclusion between the sets of monoidal extensions

Mi(R) ⊆Mi−1(R) is proper for every d = dimR and every i = 3, . . . , d.

Theorem 2.4.11. Let R be a regular local ring of dimension d with maximal ideal

m = (x1, . . . , xd). For every d ≥ 3 and for every i = 2, . . . , d − 1, there exists a

discrete valuation ring V ∈Md−i(R) \Md−i+1(R).

Proof. We recall that the rank of a valuation overring of R is at most d. By Theorem

2.4.10, any valuation ring V of rank i is not in Md−i+3(R). We want to prove by

induction on d that there is a discrete valuation ring of rank i, V ∈Md−i+2(R). For

d = 3, a discrete valuation ring of rank 3 is a monoidal non-quadratic Shannon ex-

tension and therefore is inM2(R). Indeed, if R satis�es the assumption of Theorem

2.1.4, this is clear, otherwise we refer to an explicit construction made in Example

2.6.6.

Hence, we assume the statement true for d and we prove it for e = d+1. Let R a

regular local ring of dimension e and let R′ = R(x1,...,xe−1). Such ring R′ is a regular

local ring of dimension d, and hence we can �nd a discrete valuation ring V ′ of rank

j − 1 which is inMd−j+3(R
′). Write V ′ =

⋃∞
i=0R

′
n where R′

n = R′
n−1[

qn

yn
]m′

n
. Let V

be the discrete rank j valuation overring of R occurring in the pullback diagram

V � _

��

// //
R

(x1, . . . , xe−1)� _

��

V ′ // // κ(mV ′).

Consider the ring S obtained in a sequence of local monoidal transform of R in the

following way: in the even steps 0, 2, 4, . . . , 2k we blow up the ideals qk∩R2k dividing

by yk and localizing at ((mV ′ ∩R2k[
qk∩R2k

yk
]) + xeR2k[

qk∩R2k

yk
]).
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In the odd steps 1, 3, 5, . . . , 2k+1 we blow up the maximal ideal of R2k+1 dividing

by xe and localizing at ((mV ′ ∩R2k+1[m2k+1/xe]) + xeR2k+1[m2k+1/xe]).

The direct union S of this local monoidal transforms is equal to V . Indeed, by

construction S
mV ′∩S

= R
(x1,...,xe−1)

and V ′ = S(V ′∩S). Moreover mV ′ ∩S =
⋂

i≥0 x
i
eS ⊆

tS for every t 6∈ mV ′ ∩S, and therefore mV ′ ∩S = mV ′ and this implies that S is the

pullback of the previous diagram.

Since V ′ ∈Md−j+3(R
′), the ideals qk∩R2k have height at least d−j+3 = e−j+2.

Hence all the locus ideals of the sequence along V have height at least e− j +2 and

thus V ∈Me−j+2(R).

Choosing i = d− 1 we get a set of monoidal Shannon extensions with some nice

properties, in particular we can prove that the localization of a monoidal extension

S ∈Md−1(R) at a non maximal chain-prime ideal is a quadratic Shannon extension

of a RLR of dimension d−1. This fact allows to understand more properties of these

rings. Notice that if dimR = 3, then all the monoidal Shannon extensions are of

this form and thus the next results well describe this case.

Proposition 2.4.12. Let S =
⋃

i∈NRn ∈ Md−1(R) and let {pni
}i∈N be an in�nite

collection of locus ideals of the sequence {Rn}n∈N. Denote Q =
⋃

i∈N pni
. If Q is not

maximal, then Q is prime if and only if {pni
}i∈N is a chain.

Proof. When {pni
}i∈N is a chain, then Q is prime by item 1 of Theorem 2.4.6.

Conversely, if Q is prime and not maximal, for every ni >> 0, we have pni
= Q∩Rni

again by Theorem 2.4.6, because ht pni
= d− 1 for ni >> 0. Thus:

pni
= Q ∩Rni

⊆ Q ∩Rni+1
= pni+1

.

This proves the thesis.

Theorem 2.4.13. Let S ∈ Md−1(R) and let Q =
⋃

i∈N pni
( mS a chain-prime

ideal of S. Then the chain {pni
}i∈N is minimal and SQ is a quadratic Shannon

extension of a RLR of dimension d− 1.

Proof. Since Q ( mS , then Q ∩Rn ( mn for n >> 0. Hence, by assumption on the

height of the primes pn, we have Q ∩ Rni
= pni

for i >> 0. Now, since for n < m,

Q ∩Rn ⊆ Q ∩Rm, then Q ∩Rn = pn if and only if n ∈ {ni}i∈N an this means that

the chain is minimal.

In this way we proved that Q ( mS implies that the chain {pni
}i∈N is minimal.

Now consider the rings R′
n = (Rn)(QSQ∩Rn). Set theoretically we have SQ =

⋃∞
n≥0R

′
n

but we need to show that these rings form a sequence of local quadratic transforms

of the RLR Rp0 .

For any k 6∈ {ni}i∈N, since the chain is minimal, xkS = pkS * Q and hence

xk 6∈ Q. The ring Rk+1 is a localization of Rk[
pk
xk
] at a maximal ideal containing pk,

therefore R′
k+1 = R′

k.

Hence we can restrict ourselves to consider the directed union SQ =
⋃

i∈NR′
ni
.

For any large i >> 0, the contraction Q ∩ Rni
is a prime ideal strictly contained in

the maximal ideal mni
and hence Q ∩ Rni

= pni
. By this fact and since pni

R′
ni

is

the maximal ideal of R′
ni
, for every i the ring R′

ni+1
is a local quadratic transform of

R′
ni

and this completes the proof of the theorem.
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2.5 A Noetherian overring of some monoidal Shannon

extensions

We recall the notion of arithmetic rank of an ideal:

De�nition 2.5.1. The arithmetical rank of an ideal I of a ring A is

min{n :
√
I =

√
(x1, . . . , xn)A, where x1, . . . , xn ∈ I}.

The maximal ideal of a quadratic Shannon extension has arithmetical rank one

(Theorem 1.2.4(3)). We show that under the assumption of arithmetical rank one

for each chain-prime ideals of a monoidal Shannon extension, it is possible to build

a speci�c Noetherian overring of S which is a UFD like the Noetherian hull of a

quadratic Shannon extension (which is described in Theorem 1.2.5).

Theorem 2.5.2. Let S ∈ Md−1(R) be a monoidal Shannon extension of R with

�nitely many chain-prime ideals Q1, . . . , Qc. Then the following assertions are equiv-

alent:

1. There exists an uniform N >> 0, such that the map Spec S → Spec RN is

biregular at any prime ideal P of S such that P + Qj for all j = 1, . . . , c.

2. For every i = 1, . . . , c, Qi has arithmetical rank one.

Proof. Assume item 1. First we show that any element x ∈ mS is contained in at

most �nitely many height one primes of S. Since the chain-prime ideals of S are a

�nite number, if x is contained in in�nitely many height one primes, it follows by

the assumption that x is contained in in�nitely many height one prime P such that

SP = (RN )P∩R for a su�ciently large N .

Hence, for n ≥ N such that x ∈ Rn, we would have x contained in in�nitely

many height one primes of Rn, but this is impossible since a Noetherian ring has the

�nite character.

Now, consider a chain of locus ideal. Set pni
Rni+1 = xni

Rni+1. Hence pni
S =

xni
S and therefore

xni
S ⊆ xni+1

S ⊆ xni+2
S ⊆ . . . ⊆ Q =

⋃

j≥i

xnj
S.

Since xni
is contained in only �nitely many height one primes of S, it follows that

there exists j ≥ i such that xnj
is not contained in any height one prime of S (except

possibly Q). We can also �nd j large enough to have xnj
not contained in any other

non maximal chain-prime ideal Q1, otherwise we would have Q = Q1 by minimality

of the two chains (Theorem 2.4.13).

We claim Q =
√

xnj
S. Indeed, suppose xnj

∈ P with P a prime ideal that

does not contain Q. Hence P is not a chain-prime ideal and it does not contain

any chain-prime ideal, since by Proposition 2.4.9, the height of a chain-prime ideal

is at least dimS − 1. It follows that xnj
is in the maximal ideal of SP which, by

assumption of item 1, is equal to the Noetherian ring R(P∩R). Thus xnj
is contained

in an height one prime of S contained in P and this is a contradiction. It follows

that Q =
√

xnj
S.

Assume now item 2 and write for every i = 1, . . . , c, Qi =
√

xni
S where xni

∈
Rni

. Call N = maxni. For n ≥ N , since there are �nitely many chains, any locus
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ideal pn is such that
√
pnS = Qi for some i. Hence if a prime ideal P of S does

not contain any of the chain-prime ideals, then it does not contain any locus ideal

pn for n ≥ N. Applying Proposition 2.1.2(4) with an inductive argument, we get

(RN )P∩RN
= (Rn)P∩Rn for all n ≥ N and this gives SP = (RN )P∩RN

.

These conditions are satis�ed by the ring of Construction 2.3.1 discussed in Sec-

tion 2.3, since in that case the two chain-prime ideals are principal.

Theorem 2.5.3. Let S ∈ Md−1(R) be a monoidal Shannon extension of R with

�nitely many chain-prime ideals Q1, . . . , Qc.

Assume that for every i, Qi =
√
xiS for some xi ∈ S. Then the overring

T = S

[
1

x1 · · ·xc

]

is a localization of Rn for a large n and then it is a Noetherian UFD.

Proof. Let n >> 0 such that x1, . . . , xc ∈ Rn. We show that T is �at over R. By

Richman's criterion [37, Theorem 2], T is �at over R if and only if for every maximal

ideal M of T , TM = (Rn)M∩Rn . Maximal ideals of T naturally correspond to prime

ideals of S not containing x1, . . . , xc, and by �atness of T over S, TM = SP where

P = M ∩ S. By Theorem 2.5.2, all the primes of S which does not contain any

chain-prime ideal are biregular over RN , for N >> 0. Thus we get that SP =

(RN )P∩RN
= (RN )M∩RN

and this implies the �atness of T over RN .

Now, by a theorem of Heinzer and Roitman [27, Theorem 2.5], since Rn is a

Noetherian UFD, T is a localization of Rn and it is again a Noetherian UFD.

2.6 Two classes of monoidal Shannon extensions

Now we discuss with more details two classes of monoidal Shannon extensions in

Md−1(R). The �rst one is formed by the monoidal Shannon extensions with principal

maximal ideal, the second one by the monoidal Shannon extensions with only one

chain-prime ideal P properly contained in mS and having an element x 6∈ P which

is a regular parameter in all the rings Rn. The setting of this section is the same of

the previous one and we assume dimRn = d ≥ 3 for all n.

Proposition 2.6.1. Let S be any monoidal Shannon extension of S such that mS =

xS is principal. Then mS is a chain-prime ideal.

Proof. Consider the collection of locus ideals C = {pni
|x ∈ pni

}. This collection

is in�nite, since otherwise we would �nd an n >> 0 and y ∈ mn \ xRn such that

also y ∈ mS \ xS. We prove that C is a chain, proving that, if x ∈ pni
, then

pni
Rni+1 = xRni+1. Indeed, if x ∈ pni

Rni+1 = tRni+1, we have t ∈ mS and x/t is a

unit in S. Hence x/t is a unit in Rni+1 and the proof is complete.

Now we describe the locus ideals of a quadratic Shannon extension seen as a

monoidal extension.

Lemma 2.6.2. A quadratic Shannon extension of a regular local ring R is a monoidal

Shannon extension of R with only one chain-prime ideal equal to the maximal ideal

mS.
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Proof. Let S =
⋃

n∈NRn be a quadratic Shannon extension of R. Consider the

�rst rings of the correspondent sequence of local quadratic transforms: R, R1 =

R[m/x]m1
, R2 = R1[m1/x1]m2

. We can obtain the ring R2 as iterated monoidal

transform of R in the following way: take a regular prime ideal p which contains the

regular parameter x and write m = p+ aS for a regular parameter a ∈ m. We have

R ⊆ R′ = R[p/x]m′ ⊆ R1 = R′[(a, x)R′/x]m1
⊆ R′

1 = R1[p1/x1]m′

1
⊆ R2

with m′ ⊆ m1 and p1 contains x and x1. Going ahead iterating this process we can

factor the sequence {(Rn,mn)}n∈N in a sequence of local monoidal transforms with

the requested properties.

The converse of Lemma 2.6.2 is not true in general. There are many monoidal

non quadratic Shannon extension with only one chain-prime ideal equal to mS . But

instead it turns out to be true if we assume S ∈Md−1(R) and mS to be principal. To

prove this we are going to use the characterization of quadratic Shannon extensions

as pullbacks given in Theorem 1.3.8.

Theorem 2.6.3. Let S be any monoidal Shannon extension of S such that mS = xS

is principal. Let Q =
⋂∞

j≥0 x
jS. The following are equivalent:

1. S is a quadratic Shannon extension of Rn for some n.

2. The ring SQ is a localization of Rn at the prime ideal Q ∩Rn for some n.

3. There are only �nitely many locus ideals pn contained in Q.

Proof. First consider the case in which Q = (0) and therefore S is a DVR by

[30](Exercise 1.5). Now, since S birationally dominates R, S is a quadratic Shannon

extension by [21](Proposition 3.4). Clearly (2) and (3) are true in this case.

Suppose now Q 6= (0). By [10](Theorem 2.4), S occurs in the pullback diagram

S� _

��

// // S/Q
� _

��

SQ
// // κ(Q)

where S/Q is a DVR. As a consequence of Theorem 1.3.8, (1) and (2) are equivalent.

Indeed, if S is a quadratic Shannon extension, then it is non archimedean and SQ is

its Noetherian hull. Hence (2) follows by Theorem 1.2.5(4). Conversely, if SQ is equal

to (Rn)Q∩Rn , Theorem 1.3.8 applies directly to say that S is a quadratic Shannon

extension of Rn since a DVR has divergent multiplicity sequence with respect to any

of its regular local subrings (See De�nition 1.2.12).

We observe that (3) implies (2) by Proposition 2.4.8. To conclude we need to

show that (1) implies (3). By Lemma 2.6.2, the locus ideals pn form eventually a

unique chain whose union is mS . Since Q ( mS only �nitely many of them can be

contained in Q.

Corollary 2.6.4. Let S ∈Md−1(R) be a monoidal non-quadratic Shannon extension

of S such that mS = xS is principal. Let Q =
⋂∞

j≥0 x
jS. Then Q is a chain-prime

ideal.
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Proof. By Theorem 2.6.3 the ideal Q contains in�nitely many locus ideals pn. Since

S ∈Md−1(R), for any of such ideals and n >> 0, pn = Q∩Rn. Hence the in�nitely

many locus ideals contained in Q form a chain. By Proposition 2.4.12, the union of

such chain is a prime ideal of S, which is of height at least dim(S)−1 by Proposition

2.4.9. Hence such union is equal to Q and Q is a chain-prime ideal.

We describe now the monoidal non-quadratic Shannon extension with principal

maximal ideal. Let x ∈ S such that mS = xS nd let Q =
⋂∞

j≥0 x
jS. Notice that

Q 6= 0 since S cannot be a DVR, because a DVR would be a quadratic extension.

Hence S is the pullback of the diagram

S� _

��

// // S/Q
� _

��

SQ
// // κ(Q)

where S/Q is a DVR ([10](Theorem 2.4)).

Theorem 2.6.5. (Description of monoidal non-quadratic Shannon extension in

Md−1(R) with principal maximal ideal) Let S ∈ Md−1(R) be a monoidal, but

not quadratic Shannon extension of S such that mS = xS is principal and let

Q =
⋂∞

j≥0 x
jS. Then:

1. S has exactly two chain-prime ideals Q and mS.

2. SQ is a quadratic Shannon extension of a RLR of dimension d− 1.

3. The following are equivalent:

(i) S is a valuation domain.

(ii) S is a GCD domain.

(iii) SQ is a GCD domain.

(iv) SQ is a valuation domain.

4. The Noetherian hull T of S exists and it is equal to the Noetherian hull of SQ.

5. Let V ′ be the boundary valuation ring of SQ and let V the valuation ring de�ned

by the pullback

V � _

��

// // S/Q
� _

��

V ′ // // κ(mV ′).

Then S = V ∩ T.

6. The complete integral closure of S is equal to the complete integral closure of

SQ.

Proof. For item 1, Proposition 2.6.1 implies that mS is a chain-prime ideal.

By Corollary 2.6.4, Q is a nonzero chain-prime ideal. Moreover, it is the unique

prime ideal of S of height dim(S)−1. Take another chain-prime ideal Qi =
⋃

i∈N pni

of S. Theorem 2.4.13(2) implies that the height of Qi is at least dim(S)− 1, hence

either Qi = Q or Qi = mS .

By Corollary 2.6.4, the ideal Q is a chain-prime ideal. Hence item 2 follows from

Theorem 2.4.13.
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We prove now item 3. The implication (i) =⇒ (ii) is clear. Then (ii) implies (iii)

since a localization of a GCD domain is again a GCD domain. The implication (iii)

=⇒ (iv) is given by Theorem 1.5.2. Finally (iv) =⇒ (i) follows by [10](Theorem 2.4)

since S/Q is a DVR.

For item 4, let T ′ be the Noetherian hull of SQ. If T exists, T ⊆ T ′. Take

a Noetherian overring A of S. For any y ∈ Q, the element y/xn ∈ S ⊆ A for

every n ≥ 0. But A is Noetherian and therefore there is n ≥ 1 such that y/xn ∈
(y, y/x, . . . , y/xn−1)A. Hence, multiplying xn, we get y = y(anx

n+an−1x
n−1+ . . .+

a1x) for some ai ∈ A. It follows that 1 = x(
∑n

i=1 aix
i−1) and x is a unit in A. Hence

SQ = S[1/x] ⊆ A and T ′ ⊆ A. Thus the Noetherian hull of S exists and coincides

with T ′.

We prove now item 5. Notice that V is well de�ned since S/Q ⊆ κ(Q) ⊆ κ(mV ′)

and S ⊆ V , since mV ′ ∩ S = Q.

Hence S ⊆ V ∩ T . By Theorem 1.2.5(2), V ′ ∩ T = SQ. Take a/b ∈ V ∩ T with

a, b ∈ S and b 6= 0. When b is a unit, a/b ∈ S, hence consider the case in which

b ∈ mS . Since V ∩ T ⊆ V ′ ∩ T = SQ we can assume b = xnu ∈ mS \ Q with u a

unit of S. The maximal ideal of V is xV and the value group of V is isomorphic to

G
⊕

Z where G is the value group of V ′. Assuming a/b ∈ V ∩ T , we must have the

values v(a) ≥ v(b) = (0G, n). Hence a ∈ xnV ∩ S = xnS and therefore a/b ∈ S.

Finally we prove item 6. The element 1/x is almost integral over S, hence we

have SQ = S[1/x] ⊆ S∗ ⊆ (SQ)
∗. Assume �rst SQ non archimedean. In this case,

by Theorem 1.2.11(1), (SQ)
∗ = T = SQ[1/y] where y ∈ QSQ = Q ⊆ S is such that

QSQ =
√

ySQ. Hence (SQ)
∗ = S[1/y] and 1/y is almost integral over S. It follows

that (SQ)
∗ = S∗. Consider now the case in which SQ is archimedean. Its complete

integral closure (SQ)
∗ is equal to

(QSQ :F QSQ) = (Q :F Q)

where F is the quotient �eld of R (see Theorem 1.2.11(2)). Since (SQ)
∗ = (Q :F Q)

is a fractional ideal of S that contains S∗, it follows that (SQ)
∗ = S∗.

Example 2.6.6. Let m = (x, y, z)R the maximal ideal of R and let sk :=
∑k

j=1 j.

We start blowing up the ideal p0 = (x, y)R and dividing by x and then blowing up

p1 = (y/x, z)R1 and dividing by y/x.

We iterate this process de�ning two chain of locus ideals {p2k}k∈N and {p2k+1}k∈N
where p2k = (x, y/xk) and p2k+1 = (y/xk, (zxsk)/yk), assuming hence that p2kS =

xS and p2k+1S = y
xkS for all k.

In this way we obtain the sequence of rings {(Rn,mn)}n∈N where for k ≥ 0 the

maximal ideals are

m2k = (x,
y

xk
,
zxsk

yk
)

and

m2k+1 = (x,
y

xk+1
,
zxsk

yk
).

Let S =
⋃

n∈NRn be the monoidal Shannon extension of R obtained as direct

union of this sequence of rings. The maximal ideal mS of S is the principal ideal xS.

Moreover we can note that for every n ∈ N the elements y
xn ∈ S and z

yn
=

zxsn+1

yn+1

y
xsn+1 ∈ S. Thus we have z ∈ Q :=

⋂
n≥0 y

n and y ∈ P :=
⋂

n≥0 x
n.
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We claim that S is a discrete valuation ring of rank 3. Indeed, since S is a local

domain with principal maximal ideal, the ideal P is prime and S is a valuation ring

if and only if his localization SP is a valuation ring. The ideal P is generated by the

family of elements { y
xn }n∈N and hence, since x is a unit in SP we have PSP = ySP .

By the same fact SP is a valuation ring if and only if (SP )QSP
is a valuation ring,

but (SP )QSP
= RzR is a DVR and hence S is a valuation ring.

The union of the ideals of the �rst chain {p2k}k∈N is the maximal ideal mS and

hence this chain is not minimal. Instead the chain {p2k+1}k∈N is minimal and has

as union the ideal P .

In this case the Noetherian hull of S is the overring SQ = S[ 1
x y

x

] = S[1/y] de�ned

in Theorem 2.5.3.

Now we turn to consider a second class of monoidal Shannon extensions. Assume

dimR = d and let S ∈Md−1(R) be a monoidal Shannon extension of a RLR R with

only one chain-prime ideal P ( mS . Assume there exists an element x ∈ mS \ P
such that, for every n >> 0, x is a regular parameter in Rn.

Hence the ring R′
n := Rn/xRn is well de�ned and it is a RLR with maximal ideal

pn/xRn. Moreover Rn is a local quadratic transform of Rn−1.

Since S ∈ Md−1(R), Theorem 2.4.13 implies that SP is a quadratic Shannon

extension of a regular local ring of dimension d − 1, and Proposition 2.4.9 implies

that dim(S) =dim(SP ) + 1.

A motivation for the study of this rings is the following example.

Example 2.6.7. Let R = k[x1, . . . , xd](x1,...,xd) be a localized polynomial ring over

a �eld and take for S the same assumptions and notations of the paragraph above.

It follows that

S =
⋃

n∈N

Rn =
⋃

n∈N

Rn[x](x,pn) = (
⋃

n∈N

Rn)[x](x,P ) = S[x](m
S
,x)

where S is a quadratic Shannon extension of the d − 1-dimensional RLR R/xR.

Hence, with R a localized polynomial ring S is a localized polynomial ring in one

variable over a quadratic Shannon extension and many of his properties can be easily

found looking at this construction.

When d = 3, by Abhyankhar's result ([1][Lemma 12]) S is a valuation ring, and

then S, being a localized polynomial ring over a valuation ring is a GCD domain.

Proposition 2.6.8. Take the same assumptions as above and suppose there exists

y ∈ P such that P =
√
yS. If SP is a DVR, then S is a RLR of dimension 2.

Proof. First notice that P has to be principal. Indeed, if it is non �nitely generated,

the quadratic Shannon extension SP would have an idempotent maximal ideal and

hence it would not be a DVR. Moreover, S has to be Noetherian. Indeed, if there

is a non �nitely generated ideal I, I would be contained in a non-�nitely generated

prime ideal of S. But, by Theorem 2.5.2, the map Spec S → Spec R is biregular at

any prime ideal di�erent from P and therefore all the prime ideals of S are �nitely

generated. Hence S is a Noetherian local ring of dimension 2 with maximal ideal

generated by two non associated prime elements and thus it is a RLR.

Proposition 2.6.9. Take the same assumptions as above. Suppose SP is not a DVR

and there exists y ∈ P such that P =
√
yS. Then:
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1. T = S[1/y] is the Noetherian hull of S.

2. We have the decomposition S = SP ∩ T .

3. The complete integral closure S∗ of S is T if SP is non archimedean and is

T ∩ S∗
P if SP is archimedean. Hence S is completely integrally closed if and

only if SP is completely integrally closed.

Proof. We prove item 1. By Theorem 2.5.3 follows that T is a Noetherian UFD. Let

A be a Noetherian overring of S and let M be a maximal ideal of A. Take V a DVR

that dominates AM , hence, if M ∩ S = mS , then V dominates also S. Consider

the DVR W = V ∩ F ′ where F ′ is the quotient �eld of R/xR which is clearly a

sub�eld of F =Quot(R). Therefore W dominates the quadratic Shannon extension

S =
⋃

n∈NRn. It follows that S is a DVR and thus P is an height one principal

ideal and SP is a DVR. This is a contradiction and hence M ∩ S ( mS . For the

same reason V cannot dominate SP , since SP is a quadratic Shannon extension and

not a DVR. Hence M ∩ S is a prime ideal that does not contain P . It follows that

y 6∈ M ∩ S and T ⊆ AM . This holds for every maximal ideal M of A and therefore

T ⊆ A.

We prove that

Rn = Rn[1/y] ∩ (Rn)PSP∩Rn = Rn[1/y] ∩ (Rn)pn

for any n >> 0 such that y ∈ pn. Take s ∈ Rn[1/y] ∩ (Rn)pn . Write s = a/yk with

a ∈ S and k ≥ 0. Since y ∈ pn and Rn is a UFD, yk divides a in S and hence s ∈ S.

Item 2 now follows taking the union over n ∈ N at both sides of the equality.

For item 3 assume �rst SP to be non archimedean. By Theorem 2.5.3, T = S[1/y]

is a UFD, hence completely integrally closed. Since SP is non archimedean, the ideal

∩∞n≥0y
nS is non zero and therefore the element 1/y is almost integral over S. It

follows that T is the complete integral closure of S.

Assume instead SP to be archimedean. The inclusion S∗ ⊆ T ∩ S∗
P is clear.

Take an element s/yn ∈ T ∩ S∗
P with s ∈ S. By de�nition, there exists an element

b/c ∈ SP with b ∈ S and c ∈ S \ P such that smb/ynmc ∈ SP for every m ≥ 0. But

since y ∈ P , this implies bsm ∈ ynmS for every m ≥ 0 and therefore s/ym ∈ S∗.

From item 2 it follows that S is completely integrally closed if and only if SP is

completely integrally closed.

In the next section we give a general theorem which characterizes when the two

class of monoidal Shannon extensions introduced in this section are GCD domains.

2.7 GCD property for monoidal Shannon extensions with

a �nite number of chains

Let S =
⋃

n∈NRn ∈ Md−1(R) be a monoidal Shannon extension of a RLR R and,

as usual, assume dim(Rn) = d ≥ 3 for every n.

Moreover, we consider as before the case in which in S there is just a �nite number

of chain-prime ideals. Call them Q1, . . . , Qc. We assume through this Section that

the ideals Qi have arithmetical rank one. We proved in Proposition 2.4.9 and in
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Theorem(2.4.13) that, when Qi ( mS , the height of Qi is equal to dimS− 1 and the

ring SQi
is a quadratic Shannon extension of a RLR of dimension d− 1.

In this case, for every element x such that
√
xS = Qi, there exists some n,

such that pnRn+1 = xRn+1 and hence x is a regular parameter in some ring of the

sequence.

The following result extends in the this monoidal setting the characterization of

the GCD property given for a quadratic Shannon extension in Theorem 1.5.2.

Theorem 2.7.1. Let S ∈ Md−1(R) be a monoidal Shannon extension of a RLR R

with �nite chain-prime ideals Q1, . . . , Qr. Suppose that every chain-prime ideal Qi

of S is not maximal and has arithmetical rank one. Then S is a GCD domain if and

only if SQi
is a valuation domain for every i.

The strategy to prove the "if" part of this result is the following: for every i =

1, . . . , r, we can consider yi ∈ S such that Qi =
√
yiS. The overring T = [1/y1 · · · yr]

of S is a GCD domain by Theorem 2.5.3.

We prove by induction that for i = 1, . . . , r − 1, the rings Si = S[1/y1 · · · yi] are
GCD domains. Then the �nal step will be to show that S1 GCD domain implies

S to be a GCD domain. To prove all those fact we are using inductively Theorem

2.7.5. For it we need some preliminary lemmas.

Lemma 2.7.2. Let D be a domain and let I be a proper ideal of D that properly

contains a principal prime ideal xD. Then I cannot have arithmetical rank one.

Proof. Suppose I =
√
fD for some element f ∈ D, hence f ∈ I. If f ∈ xD, then√

fD ⊆
√
xD = xD ( I, therefore we must have f 6∈ xD. Now we have x ∈ √fD

and hence there exists k ≥ 0 such that xk = fd for some d ∈ D. But xD is prime

and f 6∈ xD, hence d ∈ xD and by cancellation of x we have xk−1 = fd1 for some

d1 ∈ D. By induction, there exist t ∈ D such that 1 = x0 = ft and f is a unit. This

contradicts the fact that I is a proper ideal.

Lemma 2.7.3. Let S ∈ Md−1(R) be a monoidal Shannon extension in which all

the chain-prime ideals Qi are not maximal and they all have arithmetical rank one.

Assume that S is not a valuation ring. Then, the maximal ideal mS of S cannot have

arithmetical rank one.

Proof. Clearly mS is not principal by Theorems 2.6.5 and 2.6.3, hence we just need

to prove that there exists some prime element in S and apply Lemma 2.7.2. If there

is only one chain-prime ideal Q ( ms, since S is not a valuation ring, there exists

an height one prime P which does not contain Q and it is principal by Proposition

2.4.8. Hence its generator is a prime element.

In the other cases, take some elements x1, . . . , xr (with r > 1) such that Qi =√
xiS. Set y := x1 + x2x3 · · ·xr and we can assume, by reordering the indexes and

since x1 is a regular parameter in some Rn, that y has order one in mm for some

m ≥ 0. Hence y is prime in Rm.

Moreover it is easy to see that y 6∈ Qi for every i and hence y 6∈ pn for every n.

We show that this implies y is a prime element in Rn for n ≥ m and therefore y is

prime in S.

Let Rm+1 = Rm[ pm
t
]mm+1

. Since y 6∈ pm, it follows y 6∈ tRm+1 = pmRm+1. Con-

sider a prime element f ∈ Rm+1 such that y ∈ fRm+1. By biregularity (Proposition

50



2.1.2(6)), fRm+1 ∩Rm is an height one prime, but, since y is prime in Rm, we have

fRm+1 ∩Rm = yRm.

Moreover there exists k ≥ 0 such that tkf ∈ fRm+1 ∩ Rm = yRm and hence

tkf = yc for some c ∈ Rm. It follows f = yc/tk, but t is prime in Rm+1 and it

does not divide y. Therefore c/tk ∈ Rm+1, f ∈ yRm+1 and y is prime in Rm+1. By

induction it follows y is prime in in Rn for n ≥ m.

Lemma 2.7.4. Let D = ∪∞i≥0Di be an in�nite directed union of Noetherian UFDs

such that every maximal ideal mi of Di is contained in a maximal ideal of D. Assume

there exists some y ∈ D such that Q =
√
yD is a prime ideal of D. Assume that

either Q is maximal or D is local with maximal ideal mD, ht(Q) = dim(D)− 1 and

mD does not have arithmetical rank one. Call T = D[1/y]. Then:

(1) If a ∈ D \Q and af ∈ D for f ∈ T , then f ∈ D.

(2) Let zT be a principal proper ideal of T and assume I := zT ∩D * Q. Then

I is principal in D.

(3) Assume also that DQ is a valuation domain. Then, if I is a �nitely generated

ideal of D, I−1DQ = (IDQ)
−1.

Proof. (1) Write f = s/yk and assume by way of contradiction s 6∈ ykD. Take n ≥ 0

such that af = as/yk ∈ Di that is a UFD. Hence, since a 6∈ yD, there exists some

non unit g ∈ Di such that a, y ∈ gDi ⊆ gD. Thus
√
yD = Q (

√
gD. Now, if the

ring S is local and Q has height equal to dim(D) − 1, we must have
√
gD = mD.

But this is impossible by the assumption on the arithmetical rank of mD. If instead

Q is maximal,
√
gD = D and g is a unit in D and hence a unit in Di. Both these

contradictions imply f = s/yk ∈ D.

(2) By multiplying a unit of T , we can assume z ∈ D. There exists an element

zs/yk ∈ I \Q, hence z 6∈ ⋂∞
k≥0 y

kD. Again by multiplying z for some power of 1/y

we �nd an element u = z/ym ∈ D \ Q such that uT = zT . Indeed if z/yk ∈ Q for

every k ≥ 0, we would have z ∈ ⋂∞
k≥0 y

kQ ⊆ ⋂∞
k≥0 y

kD that is a contradiction. We

prove I = uD. Clearly uD ⊆ I, hence take h = uf ∈ I with f ∈ T . Item (1) implies

f ∈ D and therefore I = uD.

(3) We proceed along the argument given for item 4 of Proposition 2.2.2. First

we show D = DQ ∩ T (notice that when y is prime this is proved in Lemma 2.2.1).

Take f ∈ DQ ∩ T . Hence there exists a ∈ D \Q such that af ∈ D. By item (1), it

follows f ∈ D. The other inclusion is trivial.

Hence we can write

I−1 = (IDQ)
−1 ∩ (IT )−1

and since localization commutes with �nite intersection, this implies

I−1DQ = (IDQ)
−1 ∩ (IT )−1DQ.

Since DQ is a valuation ring, every prime ideal properly contained in yD is contained

in P =
⋂∞

i=0 y
nD, and thus D[1/x]DxD = DP . Therefore,

(IT )−1DQ = (IT )−1TDQ

= (IT )−1DP

= (IDP )
−1,
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where the last equality follows from the fact that IT is a �nitely generated ideal of

T and DP is a localization of T . Therefore,

I−1DQ = (IDQ)
−1 ∩ (IDP )

−1.

Since DQ ⊆ DP , this implies I−1DQ = (IDQ)
−1.

Theorem 2.7.5. Let D be a domain which ful�lls the same assumptions of Lemma

2.7.4. Also assume that DQ is a valuation domain and that T = D[1/y] is a GCD

domain. Then D is a GCD domain.

Proof. Take a and b nonzero elements of D. We proceed along the method used in

the proof of Theorem 2.2.5. Set J = (a, b)D. The ideal J is �nitely generated and

therefore JDQ is invertible in the valuation ring DQ. By Lemma 2.7.4(3), we have

JJ−1DQ = JDQ(JDQ)
−1 = DQ,

and thus we can �nd an element q ∈ J−1 such that qJ * Q.

Obviously J is principal if and only if qJ is principal. Replacing J with qJ , we

may assume without loss of generality that a 6∈ Q. Again as in 2.2.5 we have that

the ideal aD ∩ bD is principal if and only if the ideal K := D ∩ a
b
D = aD :D b is

principal. We �rst prove that KT ∩D = K.

Indeed, clearly K ⊆ KT ∩D. Take z ∈ KT ∩D, hence z = c/yn with c ∈ K and

zb = as/yn. Since a 6∈ Q, by Lemma 2.7.4(1), s/yn ∈ D and z ∈ K.

Now, if K = D, then it is principal, hence assume K ( D. This implies KT ( T .

Since T is a GCD domain, the ideal KT is principal and its contraction KT ∩ D

is not contained in Q since contains the element a. By Lemma 2.7.4(2), KT ∩ D

is principal generated by an element of D. Hence KT ∩ D = K is principal and

therefore aD ∩ bD is principal.

We can now prove Theorem 2.7.1 using by induction Theorem 2.7.5.

Proof. (of Theorem 2.7.1)

For every i = 1, . . . , r, take yi ∈ S such that Qi =
√
yiS. By Theorem 2.5.3, the

overring T = S[1/y1 · · · yr] is a GCD domain.

Since the localizations of a GCD domain are GCD domains and a quadratic

Shannon extension is a GCD domain if and only if is a valuation ring, the �rst

implication of the theorem is clear.

Assume then SQi
to be a valuation domain for every i.

We prove by induction that for i = 1, . . . , r − 1, the ring Si = S[1/y1 · · · yi] is a
GCD. Indeed, take a such i and assume Si+1 to be a GCD domain. Call Q := Qi+1Si.

The prime ideals of the ring Si are in one-to-one correspondence with the prime ideals

of S except mS , Q1, . . . , Qi. Hence dim(Si) = dim(S) − 1 = htQi+1 = ht(Q) and

Q is maximal in Si. We notice that Si+1 = Si[1/yi+1] and (Si)Q = SQi
. Moreover

we can consider Si as the directed union of the Noetherian UFDs Rn[1/y1 · · · yi] for
large n ∈ N. It follows that Si and its prime ideal Q ful�ll the hypothesis of Lemma

2.7.4 and Theorem 2.7.5 and thus Si is a GCD domain.

Finally, by Lemma 2.7.3, mS does not have arithmetical rank one and also S

ful�lls the hypothesis of Lemma 2.7.4. Further, since S1 = S[1/y1] is a GCD domain

and SQ1
is a valuation ring, S is a GCD domain again by Theorem 2.7.5.
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Question 2.7.6. Let S be a monoidal Shannon extension with �nitely many chain-

prime ideals. Then is it true that S is a GCD-domain if and only if SQi
is a valuation

domain for every i also in the case in which mS is a chain-prime ideal? This is

equivalent to prove that if mS is a chain-prime ideal, then S is a GCD domain if

and only if it is a valuation domain. We know this to be true when S is a quadratic

extension and also when mS is principal.
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Chapter 3

Lefschetz Properties for

Gorenstein graded algebras

associated to Apery Sets

Introduction

The Lefschetz properties for standard graded Artinian K-algebras are algebraic con-

cepts introduced by Stanley in [54], motivated by the Hard Lefschetz Theorem on

the cohomology rings of smooth irreducible complex projective varieties. The notion

of Poincaré duality for these cohomology rings inspired the de�nition of Poincaré

duality for algebras which is equivalent to the Gorensteiness. Hence many results

about Lefschetz properties have been proved in the Gorenstein case.

In [56], it has been shown that almost all Artinian Gorenstein algebras have the

Strong Lefschetz property. But in general it is a di�cult problem to know whether

a given speci�c algebra has the Strong (or the Weak) Lefschetz property.

Using Macaulay-Matlis duality in characteristic zero it is possible to present Artinian

Gorenstein algebras in the form A = Q/AnnQ(f) with f ∈ R = K[x1, . . . , xn] an

homogeneous polynomial and Q = K[X1, . . . , XN ] where Xi :=
∂
∂xi

are di�erential

operators (e.g. [53]). In [55] and [53], using this presentation of the algebras, the

autors introduced a criterion based on determinants of Higher Hessians that estabil-

ishes whether an algebra has or not Lefschetz properties.

In [48] this criterion was used to construct explicit examples of Artinian Gorenstein

algebras that do not satisfy one or both Lefschetz properties.

Even if the "Lefschetz properties problem" has a very simple formulation, it is in

general open even in low codimension. Indeed, while in codimension two it is known

that all the Artinian Gorenstein graded algebras have the Strong Lefschetz property,

in codimension three this is not known but is conjectured to be true. The �rst exam-

ples of algebras without Strong or Weak Lefschtz properties appear in codimension

four.

Furthermore, we do not know if there are examples of algebras without one or both

the Lefschetz properties (in any given codimension) that belong to the smaller class of

Complete Intersection rings. Indeed it is conjectured that all the Complete Intersec-

tion Artinian graded algebras have the SLP. For all this results and open conjectures

we refer to the monography The Lefschetz properties [50].

In this work we study the Weak Lefschetz property (WLP) for a class of graded
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Artinian Gorenstein algebras built up starting from the Apéry Set of a numerical

semigroup and of which they re�ect the lattice structure. Our goal is to study wheter

these algebras have the WLP in codimension three and in the Complete Intersection

case. In both cases we are going to have a positive answer, �nding thus a class of

algebras con�rming both the conjectures about WLP.

The structure of this chapter is the following: in Section 3.1 we recall some de�ni-

tions and known results about Lefschetz properties and we focus on the Hessians

criteria proved in [53].

In Section 3.2 we prove a key theorem (3.2.2) that will be our main tool for the

results of the work. It states that if a graded Artinian Gorenstein algebra

A ∼= K[x1, . . . , xn]

I

has the WLP, then also the quotient ring

A

(0 :A L)

is Gorenstein and it has the WLP for any linear element L ∈ A.

In general it is known that if an Artinian graded algebra A, non necessarily Goren-

stein, has the SLP and if L ∈ A is a Lefschetz element for A (see de�nition in Section

3.1), then
A

(0 :A L)
has the SLP; moreover, if A has the SLP in the narrow sense (see

De�nition(3.1.1)), then for any linear element L1 ∈ A, the quotient ring
A

(0 :A L1)

has the SLP if it has the same Hilbert function of
A

(0 :A L)
([50], 3.11 and 3.40).

So we prove a similar result about WLP under the hypothesis of Gorensteiness of

A in an explicit way using standard linear algebra methods without making any

assumption on the nature of the linear element L.

In Section 3.3 we construct the graded Artinian algebra associated to the Apéry Set

of a numerical semigroup. This is the same ring appeared in [43] and in [44] and used

to prove results about the Gorensteiness and the Complete Intersection property of

the associated graded ring of a semigroup ring.

In Section 3.4 and 3.5 we present the two main results of the paper. In Section 3.4 we

deal with the Complete Intersection case and we recall results from [44] to estabilish

when our algebras associated to Apéry Sets are Complete Intersections. Then we

use an useful known criterion about WLP for Complete Intersection rings combined

with Theorem(3.2.2) to get our result.

Finally, in Section 3.5 we assume the codimension to be three; in this case we are able

to completely characterize the de�ning ideal of all the graded algebras associated to

Apéry Sets in function of their socle degree and we �nd that any such algebra is of

the form

A =
K[y, z, w]

I
=

G

(0 :G zC)

with G a Complete Intersection Artinian graded ring and C a positive integer. This

characterization will imply the WLP of A as an easy consequence of Theorem(3.2.2).

The reference for all Chapter 3, where not speci�ed, is the paper "Lefschetz Prop-

erties of Gorenstein Graded Algebras associated to the Apéry Set of a Numerical

Semigroup" [49].
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3.1 Lefschetz Properties

We start recalling de�nitions and important results about the Lefschetz properties.

Let K be a �eld of characteristic zero and let A =
⊕D

i≥0Ai be a standard graded

Artinian K-algebra. Since it is Artinian, A is a �nite dimensional K-vector space.

Consider the polynomial ring in n variables K[x1, . . . , xn] with n ≥ 1. We can

always write

A ∼= K[x1, . . . , xn]

I

where I ⊆ K[x1, . . . , xn] is an homogeneous ideal of height n. The integer n =

dimK(A1) is said the codimension of the ring A.

De�nition 3.1.1. We say that:

1. A has the Weak Lefschetz property (WLP) if there is an element L ∈ A1 such

that the multiplication map ×L : Ai → Ai+1 has maximal rank for every

i = 0, . . . , D − 1.

2. A has the Strong Lefschetz property (SLP) if there is an element L ∈ A1 such

that the multiplication map ×Ld : Ai → Ai+d has maximal rank for every

i = 0, . . . , D and d = 0, . . . , D − i.

3. A has the Strong Lefschetz property in the narrow sense if there is an element

L ∈ A1 such that the multiplication map ×LD−2i : Ai → AD−i is bijective for

every i = 0, . . . , [D/2].

A linear form L ∈ A1 such that each map ×L : Ai → Ai+1 has maximal rank is

said a Weak Lefschetz element. If instead each map ×Ld : Ai → Ai+d has maximal

rank, L is said a Strong Lefschetz element.

The ring A =
⊕D

i≥0Ai is Gorenstein if there is a perfect pairing of its homoge-

neous components, that is Ai
∼= AD−i for every i.

Hence, if A is Gorenstein, it has a symmetric Hilbert function, that means:

dimK(Ai) = dimK(AD−i), ∀i.

We call the integer D the socle degree of A.

In this work we are always dealing with Gorenstein algebras and in this case it

is known that the SLP is equivalent to the Strong Lefschetz property in the narrow

sense [53].

The Artinian ring A ∼= K[x1, . . . , xn]

I
is a Complete Intersection (CI) if I is

minimally generated by exactly n elements (notice that in general I is generated by

at least n elements). It is well known that a Complete Intersection ring is always

Gorenstein. Here we state some known results and still open problems about Lef-

schetz properties of Gorenstein rings.

All the details about these topics can be found in ([50], 3.15, 3.48, 3.35, 3.46, 3.80).

Let A ∼= K[x1, . . . , xn]

I
be a standard graded Artinian Gorenstein K-algebra,

then:

• If n = 2, then A has the SLP.
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• If n = 3 and A is a CI, then A has the WLP.

• For every n, if A is a CI and I is a monomial ideal, then A has the SLP.

• It is conjectured that if A is a CI, then A has the SLP.

• If n = 3, it is unknown if there exist a such ring A that does not have the WLP

or the SLP.

The most important tools that we need to study if a Gorenstein algebra has the

Lefchetz properties are the higher Hessians.

We de�ne the ring of di�erential operators Q := K[X1, . . . , Xn] where

Xi :=
∂

∂xi
,

and we give some de�nitions and results taken from a classical work of Maeno and

Watanabe [53] and from a recent work of Gondim and Zappalá [47].

Proposition 3.1.2. Let A be a standard graded Artinian Gorenstein K-algebra and

k := [D/2] where D is the socle degree of A. Thus we have:

1. If D is an odd number, A has the WLP if there is an element L ∈ A1 such that

the multiplication map ×L : Ak → Ak+1 is an isomorphism.

2. If D is an even number, A has the WLP if there is an element L ∈ A1 such

that the multiplication map ×L : Ak → Ak+1 is surjective or equivalentely the

multiplication map ×L : Ak−1 → Ak is injective.

Theorem 3.1.3. [53](Theorem 2.1) Let A be a standard graded Artinian Goren-

stein K-algebra. Then there exists a polynomial F ∈ K[x1, . . . , xn] such that A is

isomorphic to the quotient Q/AnnQ(F ).

This shows that A is generated over K exactly by the homogeneous monomials

in K[x1, . . . , xn] that do not annihilate F when considered as di�erential operators.

De�nition 3.1.4. Let F be a polynomial in K[x1, . . . , xn] and d ≥ 1 an integer.

Take a K-linear basis Bd = {αi}si≥0 of Ad.

We de�ne the d-th Hessian of F the matrix

HessdBd
(F ) := {(αi(X)αj(X)F (x))si,j=1}.

We call the hessdBd
(F ) the determinant of this matrix. The singularity of the matrix

is independent of the chosen basis and hence we can write simply Hessd(F ) and

hessd(F ). Clearly hessd(F ) is a polynomial in K[x1, . . . , xn].

De�nition 3.1.5. Let F be a polynomial in K[x1, . . . , xn].

Taking two integers d, t ≥ 1 and two basis of Ad and At, we de�ne the mixed Hessians

of the polynomial F as

Hessd,t(F ) := {(αi(X)βj(X)F (x))}

where {αi}s1i=1 and {βj}s2j=1 form respectively the basis of Ad and At.

Theorem 3.1.6. [47](Theorem 2.10) Let A be a standard graded Artinian Gorenstein

K-algebra and k := [D/2] where D is the socle degree of A. Thus we have:
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1. The algebra A = Q/AnnQ(F ) has the SLP if and only if all the Hessians

Hessd(F ) for d = 1, . . . , k, have maximal rank (hence if they have nonzero

determinant). Moreover, a linear form L =
∑

aixi ∈ A1 is a Strong Lefschetz

element if F (a1, . . . , an) 6= 0 and hessd(F )(a1, . . . , an) is nonzero for all d.

2. If D is an odd number, the algebra A = Q/AnnQ(F ) has the WLP if and

only if the maximal Hessian Hessk(F ) has nonzero determinant. Moreover, a

linear form L =
∑

aixi ∈ A1 is a Weak Lefschetz element if F (a1, . . . , an) 6= 0

and hessk(F )(a1, . . . , an) is nonzero.

3. If D is an even number, the algebra A = Q/AnnQ(F ) has the WLP if and

only if the mixed Hessian Hessk−1,k(F ) has maximal rank. Moreover, a linear

form L =
∑

aixi ∈ A1 is a Weak Lefschetz element if F (a1, . . . , an) 6= 0 and

the matrix Hessk−1,k(F )(a1, . . . , an) has maximal rank.

The previous results follow from some facts that we want to recall:

Remark 3.1.7. Let L =
∑

aixi ∈ A1 a linear element of A.

Then the matrix Hessd(F )(a1x1, . . . , anxn) is the symmetric matrix associated to

the map ×LD−2d : Ad → AD−d and hence the �rst assertion of Theorem(3.1.6)

follows from the fact that, in the Gorenstein case, SLP is equivalent to SLP in the

narrow sense.

In particular, if the socle degree D is odd, Hessk(F )(a1x1, . . . , anxn) is the matrix

associated to the map ×L : Ak → Ak+1.

If instead D is even, we have that Hessk−1,k(F )(a1x1, . . . , anxn) is the matrix asso-

ciated to the map ×L : Ak → Ak+1, while the matrix tHessk−1,k(F )(a1x1, . . . , anxn)

is associated to the map ×L : Ak−1 → Ak.

3.2 WLP of quotient algebras

We prove a theorem that will allow us to transfer the Weak Lefschetz Property from

a Gorenstein algebra to some of its quotients. Also in this section K is a �eld of

characteristic zero.

Lemma 3.2.1. Let G =
⊕D

i≥0Gi be a standard graded Gorenstein Artinian K-

algebra that has the WLP.

Then, it is always possible to �nd a Weak Lefschetz element L =
∑n

j=1 ajxj ∈ G1

with aj 6= 0 for all j.

Proof. Let k = [D/2] and write G ∼= Q/AnnQ(F ) as in Theorem(3.1.3).

LetH beHessk(F ) ifD is odd or a square submatrix of maximal order ofHessk−1,k(F )

if D is even. Such matrix H exists by Theorem(3.1.6) since G has the WLP.

In Theorem(3.1.6) is also proved that L is a Weak Lefschetz element if and only if

det(H)(a1, . . . , an) 6= 0. Since G has the WLP, det(H) is a non constant polynomial

in K[x1, . . . , xn]. Hence there exist points (a1, . . . , an) ∈ An
K such that aj 6= 0 for all

j and det(H)(a1, . . . , an) 6= 0.
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Theorem 3.2.2. Let G =
⊕D

i≥0Gi
∼= K[x1, . . . , xn]

I
be a standard graded Gorenstein

Artinian K-algebra that satis�es the WLP.

Then, for l = 1, . . . , n, the quotient ring

A =
G

(0 :G xl)

is also a standard graded Gorenstein Artinian K-algebra. If A and G have the same

codimension, then also A has the WLP.

Proof. Since G is Gorenstein, there is a perfect pairing of its homogeneous compo-

nents, that is Gd
∼= GD−d for every d. These isomorphism are obtained associating

to an homogeneous element f ∈ Gd, the element ϕ ∈ GD−d such that fϕ = q where

q is the generator of the socle GD. We observe that the socle of A is the homoge-

neous component AD−1 and its unique generator (modulo I) as K-vector space is

the monomial x−1
l q ∈ GD−1. Therefore it is easy to see that A is a standard graded

Gorenstein Artinian algebra.

Since G and A have the same codimension, let L =
∑n

j=1 ajxj ∈ G1 = A1 be a

Weak Lefschetz Element for G with aj 6= 0 for all j (3.2.1) and let k := [D/2]. Call

z := xl, a := al and J = (0 :G xl). As usual we denote by F the polynomial such

that G ∼= Q/AnnQ(F ).

We are going to use the characterization of WLP given in Proposition(3.1.2). We

divide the proof in two subcases:

(1) D odd:

By Proposition(3.1.2), we have that the multiplication map ×L : Gk → Gk+1 is an

isomorphism and we want to prove that the map ×L : Ak → Ak+1 is surjective.

The ideal J = (0 :G xl) can be seen as a K-vector subspace of G and by de�nition

A∩J = (0). Hence G ∼= A⊕J as K-vector spaces and thus we can write the elements

of G in the form (a, j) with a ∈ A and j ∈ J and we have (a, j) ∈ J if and only if

a = 0.

Take (a, j) ∈ Gk+1 with a 6= 0. The map ×L is an isomorphism, so we can

consider its preimage ×L−1(a, j) = (a1, j1) ∈ Gk. Showing a1 6= 0, we will have that

×L : Ak → Ak+1 is surjective.

Assume a1 = 0, then by de�nition (a, j) = ×L(a1, j1) = ×L(0, j1) = (0, Lj1) ∈ J ,

and thus a = 0. This is a contradiction.

(2) D even:

Now, Proposition(3.1.2) implies that the multiplication map ×L : Gk−1 → Gk is

injective and we want to prove that the map ×L : Ak−1 → Ak is also injective (or

surjective because Ak−1
∼= Ak).

Since G ∼= A ⊕ J as K-vector spaces, the map ×L : Ak−1 → Gk is injective on his

image and therefore is injective on Ak if we show ×L(Ak−1) ∩ J = (0).

By assumption we have J = (0 :G z), so we need to show zLf 6= 0 for all f ∈ Ak−1.

Let Z be the matrix associated to the multiplication map ×zL : Gk−1 → Gk+1.

By Remark(3.1.7), the matrix associated to ×L : Gk−1 → Gk is tH(a1x1, . . . , anxn)

where H := Hessk−1,k(F ), while the matrix associated to ×z : Gk → Gk+1 is

H(0, . . . , z, . . . , 0) where z appear in the l-th place. Thus

Z = H(0, . . . , z, . . . , 0)tH(a1x1, . . . , anxn)

is a square matrix of dimension b = dimK(Gk−1) (observe that Gk−1
∼= Gk+1).
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Now take aK-linear basis f1, . . . , fb of Gk−1 formed by monomials. Since Gk−1
∼=

Ak−1 ⊕ Jk−1, we can assume this basis to be the union of a basis of Ak−1 and a

basis of Jk−1. We de�ne two set of indexes: I := {i ∈ {1, 2, . . . , b}, fi 6∈ J} and

H := {i ∈ {1, 2, . . . , b}, fi ∈ J}.
We want to show Z · f 6= 0 for every f =

∑b
i=1 tifi ∈ Ak−1. Consider the i-th

row of the mixed hessian H. By construction, there exists j such that Hij = z if

and only if zfi 6∈ I, that means zfi 6= 0 in G. This is equivalent to say fi 6∈ J and

therefore it is also equivalent to say i ∈ I.
Thus, by de�nition of Z, we have

Zij :=

b∑

u=1

[H(0, . . . , z, . . . , 0)]uj [
tH(a1x1, . . . , anxn)]iu

and hence the entry Zii = az2 if and only if i ∈ I. Otherwise, if i ∈ H all the i-th

row of Z is zero. Hence Z is a square matrix with |H| = dimK(Jk−1) zero rows.

Consider the submatrix M := {Hij}i∈I . A square submatrix of maximal order

of M (that we may call M̃) has the element az2 on all the entries on the principal

diagonal and it has either the elements ajxjz with xj 6= z or 0 elsewhere (depending

on the entries of H). Therefore, it is easy to see that M̃ has nonzero determinant

and hence M has maximal rank. Indeed det(M̃) = z2m + p(x1, . . . , xn) with m > 1

and deg(z, p) < 2m.

Hence

dimK( Ker(Z)) = dimK(Gk−1)− dimK(Im(Z)) = b− |I| = |H|.

The last thing that we need to prove is that Ker(Z) = Jk−1 because this will imply

Z · f 6= 0 for every f ∈ Ak−1. Since Ker(Z) and Jk−1 have the same dimension,

we need to show just one inclusion. But for every t ∈ J , Lt ∈ J = (0 :G z), hence

zLt = 0 and thus Jk−1 ⊆ Ker(Z) and this concludes the proof.

By using a linear change of coordinates on x1, . . . , xn, we �nd as an easy corollary

that, if G ia an Artinian standard graded Gorenstein algebra with the WLP, then

any quotient
G

(0 :G f)
with f ∈ G1 has the WLP. We did not prove directly this

result since the construction of the matrix would have been more complicate.

Corollary 3.2.3. Let G =
⊕D

i≥0Gi
∼= K[x1, . . . , xn]

I
be a standard graded Goren-

stein Artinian K-algebra with the WLP and let f ∈ G1 a linear element.

Then, the quotient ring

A =
G

(0 :G f)

is also a standard graded Gorenstein Artinian K-algebra. If A and G have the same

codimension, then also A has the WLP.

Proof. Write f =
∑

bixi and, assuming b1 6= 0, make the linear change of coordinates

ϕ : K[x1, . . . , xn] −→ K[y1, . . . , yn] given by y1 := ϕ(f) and yi := ϕ(xi) for i ≥ 2.

Consider the surjective homomorphism

K[x1, . . . , xn]
ϕ−→ K[y1, . . . , yn] �

K[y1, . . . , yn]

ϕ(I)
=: G′
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whose kernel is the ideal I.

ThereforeG ∼= G′. Moreover the ideal (0 :G′ y1) ofG
′ is the image of the ideal (0 :G f)

of G. Hence the result follows applying Theorem(3.2.2) to the ring
G′

(0 :G′ y1)
.

3.3 Algebras associated to Apéry Sets

We want to investigate on the Lefschetz properties of a class of Artinian Gorenstein

algebras obtained from numerical semigroups.

Let S = 〈g1 = m, g2, . . . , gn〉 ⊆ N be a numerical semigroup. Recall that in this

case gcd(g1, . . . , gn) = 1. For all the basic knowledge about numerical semigroups

and semigroup rings consider as references [46] and [45].

The Apéry set of S with respect to the minimal generator of the semigroup is

de�ned as the set

Ap(S) := {s ∈ S : s− g1 6∈ S} = {0 = ω1 < ω2 < · · · < ωm = f + g1},

where f :=max(N \S) is the Frobenius number of S. Note that Ap(S) is a �nite set

and |Ap(S)| = g1 = m.

De�nition 3.3.1. Let s ∈ S. A representation of s is an n-uple λ = (λ1, . . . , λn)

such that s =
∑n

i≥1 λigi. The order of s is de�ned as

ord(s) := max{
n∑

i≥1

λi : λ is a representation of s}.

A representation is said to be maximal if ord(s) =
∑n

i≥1 λi.

De�nition 3.3.2. The semigroup S is said M -pure symmetric if for each i =

0, . . . ,m:

(1) ωi + ωm−i = ωm and

(2) ord(ωi) + ord(ωm−i) = ord(ωm).

Therefore the Apéry set of a M -pure symmetric semigroup has the structure of

a symmetric lattice.

Let K be a �eld of characteristic zero and consider the homomorphism:

Φ : K[x1, . . . , xn] −→ K[t]

xi 7−→ tgi .

The one dimensional ring R = K[S] := K[tg1 , . . . , tgn ] ∼= K[x1, . . . , xn]

ker(Φ)
is called the

semigroup ring associated to S.

We can associate to any representation of an element s ∈ S a monomial in R by the

correspondence

s =
n∑

i≥1

λigi ←→ xλ := xλ1

1 · · ·xλn
n .
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induced by the preovious homomorphism. We can observe that the monomials in

R that correspond to di�erent representations of the same element s are equivalent

modulo ker(Φ).

Consider now the zero dimensional ring R := R/x1R.

Notice that for s =
∑n

i≥1 λigi ∈ Ap(S), we have λ1 = 0 and the correspondent

monomial
∏n

i=2 xi
λi 6= 0 in R. Conversely if s 6∈ Ap(S), then x1 divides xλ for at

least one representation λ of s and hence

R = 〈xλ |
n∑

i≥1

λigi ∈ Ap(S)〉K

is generated as a K-vector space by the classes modulo the ideal x1R of the mono-

mials xλ for every representation λ of any element of Ap(S). Notice that in this

way there is a one to one correspondence between the elements of Ap(S) and the

generators of R as a K-vector space.

Recall that for a graded ring R and an homogeneous ideal m, the associate graded

ring of R with respect to m is de�ned as

grm(R) :=
⊕

i≥0

mi

mi+1
.

De�nition 3.3.3. Let m be the maximal homogeneous ideal of R. De�ne

A = grm(R)

to be the associated graded algebra of the Apéry set of S.

By de�nition of associated graded ring, we have that

A =
D⊕

i≥0

Ai = 〈xλ |
n∑

i≥1

λigi ∈ Ap(S) and λ is maximal 〉K

is an Artinian standard graded K-algebra generated by the monomials xλ associated

to the maximal representations of the elements of Ap(S). Notice that the socle degree

is D = ord(f + g1) and that we can think of the homogeneous K-generators of A to

have the same lattice structure of Ap(S). In the work Goto Numbers of a Numerical

Semigroup ring and the Gorensteiness of Associated Graded Rings [43], Lance Bryant

characterized when this kind of rings are Gorenstein.

Proposition 3.3.4. Let S be a numerical semigroup. Then the ring A associated to

Ap(S) is Gorenstein if and only if S is M -pure symmetric.

Example 3.3.5. Consider the numerical semigroup S = 〈8, 10, 11, 12〉.
Its Apéry set is Ap(S) = {0, 10, 11, 12, 21, 22, 23, 33} and it can be easily checked

that S is M -pure symmetric. The associated graded Artinian algebra is

A = K ⊕ 〈y, z, w〉K ⊕ 〈yz, yw, zw〉K ⊕ 〈yzw〉K.

Since in the semigroup 22 = 11 + 11 = 10 + 12, then in the ring A, yw ≡ z2 and

hence

A ∼= K[y, z, w]

(y2, z2 − yw,w2)
.
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In order to check when this kind of graded rings have the Lefschetz properties

we want to use Theorem(3.1.6) and some consequences of it and therefore we need

to �nd who is the polynomial F such that A is isomorphic to Q/AnnQ(F ) (see

Theorem(3.1.3)) and compute his Hessians.

It is possible to write the Apéry set of S as Ap(S) =
⋃D

d≥0Apd where Apd is the

set of the element of Ap(S) of order d. It is clear from the de�nition of A that the

dimension of Ad as K-vector space is equal to the cardinality of Apd.

From now on we are going to use the previous notation xλ for the homogeneous

monomials in A instead of the heavier notation xλ (or we will use the variables

y, z, w if in codimension 3). We can choose as basis Bd of Ad a set of of monomials

{xλ1

, . . . , xλ
bd} where the λj are maximal representations of the elements ωj ∈ Apd

and bd = dimK(Ad). For instance in Example(3.3.5) we can choose equivalently as

basis for A2 either the set {yz, yw, zw} or the set {yz, z2, zw} since yw ≡ z2 in such

ring A.

Proposition 3.3.6. Call Λ the set of the maximal representations of the maximal

element of Ap(S), f + g1.

The graded ring A associated Ap(S) is isomorphic to Q/AnnQF , where Q = K[X1, . . . , Xn]

and F =
∑

λ∈Λ xλ.

Proof. We want to apply to this particular case of graded rings associated to the

Apéry set of a semigroup the general proof of the existence of the polynomial F

given by Maeno and Watanabe ([53], Theorem 2.1).

Identifying the algebra A with the quotient of Q by an ideal I (called the de�ning

ideal of A), we have the exact sequence of modules Q → A → 0. That sequence

induces another exact sequence

0→ Hom(A,K) ∼= A
θ→ Hom(Q,K) ∼= K[[x2, . . . , xn]].

Maeno and Watanabe proved that F is equal to θ(1) ∈ K[[x2, . . . , xn]] with 1 :=

(1, 0, . . . , 0) ∈ A.

In order to use this fact we recall that the isomorphism between the ring A and

Hom(A,K) is the application that maps a = (a0, . . . , aD) ∈ A to the map ϕa : A→
K de�ned by ϕa(c) =

∑D
i=0 aicD−i for each c = (c0, . . . , cD) ∈ A. We also recall that

the isomorphism between K[[x2, · · · , xn]] and Hom(Q,K) is obtained identifying a

formal power series f with the homomorphism which maps every monomial of Q to

its correspondent numerical coe�cient in the power series f .

Thus we have 1 ∈ A identi�ed with the homomorphism ϕ1 mapping c = (c0, . . . , cD) ∈
A to his last component cD. Hence we compute

F = θ(1) =
∑

ϕ1(X
s2
2 · · ·Xsn

n )xs22 · · ·xsnn ,

where the sum is taken over the in�nite basis of Q over K and ϕ1(α) := ϕ1(α + I)

for α ∈ Q.

Now we compute ϕ1(X
s2
2 · · ·Xsn

n ) for every possible values of the si. Let α =

Xs2
2 · · ·Xsn

n and s =
∑n

i=1 sigi ∈ S. If s 6∈ Ap(S) or s ∈ Ap(S) but ord(s) >
∑n

i=1 si,

then α ∈ I and ϕ1(α) = 0.

All the other monomials of the K-basis of Q are associated to a maximal represen-

tation of an element ω ∈ Apd, therefore for every α = Xs2
2 · · ·Xsn

n there exists a

monomial Xλ such that α ≡ Xλ mod I.
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If d < D, the D-th component of Xλ is equal to zero and in this case ϕ1(α) =

ϕ1(X
λ) = 0. If instead d = D, it is clear that α is a maximal representation of

f +m and ϕ1(α) = ϕ1(X
λ) = 1. Thus in the sum only survive the maximal repre-

sentations of f + g1 with coe�cient 1.

Example 3.3.7. Let S = 〈16, 18, 21, 27〉. We compute the Hessians to study the

Lefschetz properties of the algebra A associated to the Apéry set of S.

We have that Ap(S) = {0, 18, 21, 27, 36, 39, 42, 45, 54, 57, 60, 63, 72, 78, 81, 99} and S

is M -pure symmetric.

Doing the computation as in Example(3.3.5) we see that in this case

A ∼= K[y, z, w]

(y5, z3 − y2w,w2, zw, y3z)
.

Hence the socle degree of A is D = 5. In the semigroup 99 = 4 ·18+27 = 2 ·18+3 ·21
and by (3.3.6) the polynomial F = y4w + y2z3. We choose as basis respectively

{y, z, w} for A1 and {y2, yz, z2, yw} for A2.

We compute the �rst Hessian of F ,

Hess1(F ) =



y2w + z3 yz2 y3

yz2 zy2 0

y3 0 0




The second Hessian is

Hess2(F ) =




w 0 z y

0 z y 0

z y 0 0

y 0 0 0




The hessians have both maximal rank, hence A has the SLP.

3.4 Complete Intersections Algebras

In this section we recall some results of D'Anna, Micale and Sammartano [44] that

we need to characterize when the graded algebra associated to the Apéry Set of a

numerical semigroup is a Complete Intersection. Let S = 〈g1 = m, g2, . . . , gn〉 be
a numerical semigroup. In [44] the autors introduced two hyper-rectangles in Nn−1

that contain the representations of the elements Ap(S) and whose properties deter-

mine in some way when the associated graded algebra A =
⊕D

i≥0Ai is a Complete

Intersection. At the end of this section, combining Theorem(3.2.2) and a classical

criterion for Weak Lefschetz properties of Complete Intersection algebras, we prove

that any Complete Intersection algebra A associated to the Apéry Set of a numerical

semigroup has the WLP.

De�nition 3.4.1. For 2 ≤ i ≤ n, de�ne:

βi := max{h ∈ N |hgi ∈ Ap(S) and ord(hgi) = h};
γi := max{h ∈ N |hgi ∈ Ap(S), ord(hgi) = h and hgi has a unique maximal representation}.
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The positive natural numbers βi and γi are strongly related to the degrees of the

generators of the de�ning ideal of A seen as quotient of the polynomial ring in n− 1

variables.

Remark 3.4.2. For all i = 2, . . . , n, γi ≤ βi. But always γ2 = β2 and γn = βn.

Proof. By de�nition γi ≤ βi for every i. For the second statement assume γ2 < β2,

and hence we must have that (γ2 + 1)g2 =
∑

j 6=2 λjgj are two di�erent maximal

representations of the same element of Ap(S). Hence they have the same order and

therefore (γ2 + 1) =
∑

j 6=2 λj , but this is impossible since g2 < g3 < . . . < gn. For

the same reason it follows that γn = βn.

For the proofs of all the following facts see [44](Section 2).

Proposition 3.4.3. Let ω =
∑ν

i=2 λigi ∈ Ap(S) with λ = (λ2, . . . , λn) a maximal

representation. Then λi ≤ βi for each i. If λ is the maximum of the set of maximal

representations of s with respect to the lexicographic order, then λi ≤ γi for each i.

De�nition 3.4.4. De�ne two hyper-rectangles in Nn−1:

B =
{∑n

i=2 λigi | 0 ≤ λi ≤ βi

}
and Γ =

{∑n
i=2 λigi | 0 ≤ λi ≤ γi

}

Using Proposition(3.4.3), it can be proved that

Ap(S) ⊆ Γ ⊆ B

and moreover we can give some characterizations of when the possible equalities

hold.

Proposition 3.4.5. The following assertions are equivalent for a numerical semi-

group S:

1. Ap(S) = B.

2. The maximal element of Ap(S), f + g1 has a unique maximal representation.

3. All the element of Ap(S) have a unique maximal representation.

4. g1 =
∏n

i=2(βi + 1).

5. D = ord(f + g1) =
∑n

i=2 βi.

Proposition 3.4.6. The following assertions are equivalent for a numerical semi-

group S:

1. Ap(S) = Γ.

2. g1 =
∏n

i=2(γi + 1).

3. D = ord(f + g1) =
∑n

i=2 γi.

Consider now the ring A =
⊕D

i≥0Ai
∼= K[x2, . . . , xn]

I
. associated to Ap(S).

Such ring is a Complete Intersection if and only if I is minimally generated by n− 1

elements. The next proposition is the key to characterize when it happens.
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Proposition 3.4.7. The de�ning ideal I of A always contains the ideal

Ĩ = (xγi+1
i − ρi

∏

j 6=i

x
λj

j : i = 2 . . . , n)

where ρi = 0 if βi = γi and ρi = 1 if βi > γi. In the second case (γi + 1)gi =∑
j 6=i λjgj are two di�erent maximal representation of the same element of Ap(S).

Furthermore I = Ĩ if and only if A is a Complete Intersection.

This result is proved using the de�nitions of βi and γi and considering the mono-

mials of A corresponding to the representations of the elements of S. Let s ∈ S

and let λ = (λ1, . . . , λn) be a representation of s, the key fact is that the monomial

xλ := xλ1

1 · · ·xλn
n ∈ I if either s 6∈ Ap(S) or if λ is not maximal.

Theorem 3.4.8. The followings assertions hold:

1. A is a Complete Intersection if and only if Ap(S) = Γ.

2. A is a Complete Intersection and its de�ning ideal I is generated by monomials

if and only if Ap(S) = B.

Proof. Observe that Ĩ is an ideal of K[x2, . . . , xn] generated by a regular sequence

of n−1 elements, hence
K[x2, . . . , xn]

Ĩ
is an Artinian Complete Intersection ring and

therefore it has �nite dimension as K-vector space.

Assertion 1 follows from the following inequality:

g1 = |Ap(S)| = dimK(
K[x2, . . . , xn]

I
) ≤ dimK(

K[x2, . . . , xn]

Ĩ
) = |Γ| =

n∏

i=2

(γi + 1)

applying Proposition(3.4.7) and Proposition(3.4.6).

For assertion 2 just observe that if Ap(S) = B, then γi = βi for all i and use

Proposition(3.4.7) and Proposition(3.4.5).

Example 3.4.9. Consider the numerical semigroup S = 〈15, 21, 35〉.
Its Apéry Set is Ap(S) = {0, 21, 35, 42, 56, 70, 63, 77, 91, 84, 98, 112, 119, 133, 154}.
We can see that 84 = 21 · 4 ∈ Ap(S) and 105 = 21 · 5 6∈ Ap(S), then 70 = 35 · 2 ∈
Ap(S) and 105 = 35 · 3 6∈ Ap(S), hence β2 = γ2 = 4, β3 = γ3 = 2 and we can verify

that

B =
{ 3∑

i=2

λigi | 0 ≤ λi ≤ βi

}
= Ap(S).

The associated graded algebra is

A =
K[y, z]

(y5, z3)
.

and it is a monomial Complete Intersection.

Consider now the semigroup S = 〈8, 10, 11, 12〉 as in Example(3.3.5).

In this case Ap(S) = {0, 10, 11, 12, 21, 22, 23, 33} and we can see that 20 = 10·2 6∈
Ap(S), 24 = 12 · 2 6∈ Ap(S), 33 = 11 · 3 ∈ Ap(S), 44 = 11 · 4 6∈ Ap(S) and

11 · 2 = 10 + 12.

Hence β2 = γ2 = 1, β4 = γ4 = 1 but 1 = γ3 < β3 = 3. Therefore

Γ =
{ 4∑

i=2

λigi | 0 ≤ λi ≤ γi

}
= Ap(S) ( B.
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The associated graded algebra is

A =
K[y, z, w]

(y2, z2 − yw,w2)
.

and it is a Complete Intersection but it is not monomial.

The next proposition is a standard result for WLP of Complete Intersection

algebras that states that if there exists a minimal generator of the de�ning ideal

having a su�ciently big degree (about the half of the socle degree), then A has the

WLP. For the proof see ([50], 3.52 and 3.54).

Proposition 3.4.10. Let A =
K[x1, . . . , xn]

(f1, . . . , fn)
a Complete Intersection standard

graded Artinian K-algebra.

Call di := degfi and assume that dn ≥ di ≥ 2 for all i. Then, the condition

dn ≥ d1 + . . .+ dn−1 − n

implies that A has the WLP.

Corollary 3.4.11. Let A =
⊕D

i≥0Ai be a standard graded algebra associated to the

Apéry Set of a numerical semigroup. If A is a Complete Intersection and there exist

γi ≥
D − 2

2
, then A has the WLP.

Proof. Since A is a Complete Intersection, D =
∑n

i=2 γi by Proposition(3.4.6) and

Theorem(3.4.8). Assume, by changing the order of the generators of the de�ning ideal

of A, that γn ≥ γi for all i. Using notation of Proposition(3.4.10) we have di = γi+1.

Thus W := dn− (d2+ . . .+dn−1−n+1) = γn+1− (
∑n

i=2(γi+1)−γn−1−n+1) =

γn + 1− (D + n− 1− γn − n) = 2γn −D + 2. By assumption W ≥ 0 and hence by

Proposition(3.4.10), A has the WLP.

Theorem 3.4.12. Let A =
⊕D

i≥0Ai be the graded algebra associated to the Apéry

Set of a numerical semigroup. If A is a Complete Intersection, then A has the WLP.

Proof. By Proposition(3.4.7), the de�ning ideal of A is

(f2, . . . , fn) := (xγi+1
i − ρi

∏

j 6=i

x
λj

j : i = 2 . . . , n)

and we recall that ρ2 = ρn = 0 by Remark(3.4.2).

By Corollary(3.4.11), if there exists γi ≥ t = D−2
2 , then A has the WLP. Hence

assume γi < t for every i and consider the Artinian Complete Intersection ring

B :=
K[x2, . . . , xn]

(xN2 , f3, . . . , fn)

with N ≥ D−γ2. By Proposition(3.4.6), D =
∑n

i=2 γi and therefore the socle degree

of B is by construction E = D − γ2 +N − 1. Now

E

2
=

D − γ2 +N − 1

2
≤ 2N − 1

2
< N
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and thus, Corollary(3.4.11) implies that B has the WLP.

Call T :=
K[x2, . . . , xn]

(f3, . . . , fn)
. Since for every i 6= 2, deg(x2, fi) ≤ γ2, we have A ∼=

T

(xγ2+1
2 )

and B ∼= T

(xN2 )
. Hence

A ∼= B

(0 :B xN−γ2−1
2 )

.

To prove the thesis of this theorem we need to show that
B

(0 :B xC2 )
has the WLP

for 1 ≤ C ≤ N − γ2 − 1. Use induction on C: when C = 1 this is Theorem(3.2.2).

For C > 1, we can write

B

(0 :B xC2 )
=

B

(0 :B xC−1
2 )

(0 :B′ x2)

with B′ :=
B

(0 :B xC−1
2 )

.

Now the result follows using Theorem(3.2.2) and inductive hypothesis.

3.5 Codimension 3 Algebras

In this section we study the Gorenstein graded algebras associated to the Apéry Set

of numerical semigroups in low codimension.

Let S be a M -pure symmetric numerical semigroup and let A be the graded

algebra associated to Ap(S). Observe that if S is generated by n elements, then the

codimension of the ring A is n− 1. In [44] is proved that, when S is generated by 3

elements, it is M -pure symmetric if and only if Ap(S) is equal to the hyper-rectangle

B and hence A is Gorenstein if and only if it is a monomial Complete Intersection.

In this case it is known that A has the SLP.

A more interesting case that we are going to discuss is when S is generated by 4

natural numbers g1, g2, g3, g4. Write

A ∼= K[y, z, w]

I
.

In this context A has codimension 3 and, if it is a Complete Intersection, it has the

WLP. But we recall that in general it is not known if a Gorenstein Artinian algebra

of codimension 3 has the WLP.

Therefore for the rest of the section we assume that A is not a Complete In-

tersection. This means by Theorem(3.4.8) that Ap(S) is properly contained in the

hyper-rectangle Γ. We want to characterize the de�ning ideal of A. In order to do

this, we need some more results.

Lemma 3.5.1. Let S = 〈g1, g2, g3, g4〉 be a M -pure symmetric numerical semigroup

and assume Ap(S) ( Γ. Then γ3 < β3.

Proof. Since Ap(S) ( Γ ⊆ B, by Proposition(3.4.5), the maximal element of Ap(S),

f + g1 has more than one maximal representation. Subtracting common terms by

two of this representations we obtain a double representation of an element of Ap(S)
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that has to be necessarily of the form λ3g3 = µ2g2 + µ4g4 (since g2 < g3 < g4)

and the two di�erent representations have the same order. This implies γ3 < β3 by

de�nition.

Remark 3.5.2. The fact that A is not a Complete Intersection implies that there

exists γi < βi for some i = 2, . . . , n, is not true in codimension higher than 3. This

is due to the fact that it may appear double maximal representations of elements

of Ap(S) like
∑

i∈I λigi =
∑

j∈J µjgj whit I,J ⊆ {2, . . . , n}, I ∩ J = ∅ and

|I|, |J | ≥ 2. For example consider the numerical semigroup S = 〈g1, g2, g3, g4, g5〉 =
〈6, 7, 8, 9, 10〉. The Apéry Set of S is Ap(S) = {0, 7, 8, 9, 10, 17} and S is M -pure

symmetric. Observe that 2gi 6∈ Ap(S) for every i = 2, 3, 4, 5 and hence γi = βi = 1.

Moreover 15 = 7 + 8 = 6 + 9 ∈ Γ \ Ap(S). So in this case we have Ap(S) ( Γ = B

and A is not a Complete Intersection.

Corollary 3.5.3. There exists one element s of the Apéry Set of the numerical

semigroup S which has the double representation

s = (γ3 + 1)g3 = µ2g2 + µ4g4

with 1 ≤ µ2 ≤ γ2, 1 ≤ µ4 ≤ γ4 and µ2 + µ4 = γ3 + 1. Hence the ideal

Ĩ = (yγ2+1, zγ3+1 − yµ2wµ4 , wγ4+1)

is properly contained in I.

Proof. It follows immediately from the previous Lemma(3.5.1) and from Proposi-

tion(3.4.7) and Remark(3.4.2). Notice that by De�nition(3.4.1), this element (γ3 +

1)g3 is the minimal in Ap(S) with a double representation. The containment Ĩ ( I

is proper since A is not a Complete Intersection.

De�nition 3.5.4. De�ne the ring G :=
K[y, z, w]

Ĩ
.

We observe that G is a standard graded Artinian Complete Intersection algebra and

G = 〈xλ |
4∑

i≥2

λigi ∈ Γ and λ is maximal 〉K .

Therefore A is isomorphic to a K-vector subspace of G.

As rings A is a quotient of G and we write

A ∼= G

J

where J := Ĩ /I.

We need to �nd which are the generators of the ideal J and for this reason, we

want to characterize the elements of the set Γ \ Ap(S). Write G =
⊕D

i≥0Gi and

A =
⊕D−C

i≥0 Ai for a positive integer C. This two rings are equal if and only if A is a

Complete Intersection and if and only if C = 0. The �rst "if and only if" follows from

Theorem(3.4.8). We are going to explain the second one in the next proposition.

Call ωD = γ2g2 + γ3g3 + γ4g4 the maximal element of Γ and ωE = f + g1 the

maximal element of Ap(S).

Proposition 3.5.5. The following statements hold:
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1. ωE = ωD − Cg3.

2. C ≤ γ3.

3. Γ \Ap(S) = {ω ∈ Γ : ω + Cg3 6∈ Γ}.

Proof. 1. We set, for each ω ∈ Γ, the element ω′ := ωE − ω. Clearly when ω ∈
Ap(S), ω′ ∈ Ap(S) and ord(ω)+ord(ω′) = ord(ωE) because S is M -pure symmetric.

Instead, when ω 6∈ Ap(S), also ω′ 6∈ Ap(S). Also the set Γ is clearly symmetric by

construction: ωD − υ ∈ Γ for each υ ∈ Γ and also in this case an analogous equality

for the orders of the elements holds, meaning that ord(υ) + ord(ωD − υ) = ord(ωD).

By way of contradiction assume ωE = ωD − g2 − υ with υ ∈ Γ. Thus ωE + g2 =

ωD − υ ∈ Γ. But, by de�nition γ2g2 ∈ Ap(S) and, since by Remark(3.4.2), γ2 = β2,

it follows that ωE = γ2g2 + λ3g3 + λ4g4. This fact implies ωE + g2 6∈ Γ.

In the same way, using that γ4g4 ∈ Ap(S) and γ4 = β4, it is possible to show that

ωE cannot be of the form ωD − g4 − υ with υ ∈ Γ and hence ωE = ωD − Cg3 with

C = ord(ωD)− ord(ωE).

2. Follows immediately from item 1 by de�nitions of ωD.

3. Set W := {ω ∈ Γ : ω + Cg3 6∈ Γ} and take ω ∈ W . By item 1, we can write for

each ω ∈ Γ, ω′ = ωD−Cg3−ω. Assuming ω ∈ Ap(S), we also have ω′ ∈ Ap(S) ⊆ Γ.

Therefore by de�nition, ω + Cg3 = ωD − ω′ ∈ Γ and this is a contradiction since

ω ∈W . This proves W ⊆ Γ \Ap(S), now we prove the reverse inclusion.

Take now ω ∈ Γ \ Ap(S). As said before, we have in this case ω′ = ωE − ω =

ωD−Cg3−ω 6∈ Ap(S). If we assume ω 6∈W , we have ω+Cg3 ∈ Γ and hence ω′ ∈ Γ.

Thus ω′ ∈ Γ \ Ap(S) and, by de�nition of Ap(S), for every ω ∈ Γ, ω + ω′ 6∈ Ap(S).

But certainly it must exists a minimal generator of the semigroup gj ∈ Ap(S) (with

j 6= 1) such that ω−gj ∈ Γ and, setting ω := ω−gj , we have ω+ω′ = ωD−Cg3−gj =
ωE − gj ∈ Ap(S). Therefore we must have ω ∈W .

Theorem 3.5.6. Assume with the same notations as before, G =
⊕D

i≥0Gi and

A =
⊕D−C

i≥0 Ai. Set h2 = γ2 − µ2 + 1, h3 = γ3 − C + 1 and h4 = γ4 − µ4 + 1 where

µ2 and µ4 are given in Corollary(3.5.3). Thus the de�ning ideal of A is

I = Ĩ + (zh3yh2 , zh3wh4).

Moreover

A =
G

(0 :G zC)
.

Proof. We have seen that A is isomorphic to G modulo the ideal J := Ĩ /I. By con-

struction of these two algebras, the ideal J is generated by the elements {xλ |∑4
i≥2 λigi ∈

Γ \Ap(S) and λ is maximal }.
Hence we need to show that yh2zh3 and zh3wh4 are the unique monomial represen-

tations of the minimal elements of Γ \ Ap(S) with respect to the standard partial

order of Γ ⊆ N3.

Take ω = λ2g2+λ3g3+λ4g4 ∈ Γ\Ap(S), thus by Proposition(3.5.5) ω+Cg3 6∈ Γ and

hence λ3 +C ≥ γ3 + 1. Moreover, to be out of Γ we need either λ2 ≥ γ2 − µ2 + 1 or

λ4 ≥ γ4−µ4+1. Indeed Cg3+h2g2+h3g3 = Cg3+(γ2−µ2+1)g2+(γ3−C+1)g3 =

(γ3+1)g3+(γ2−µ2+1)g2 = µ2g2+µ4g4+(γ2−µ2+1)g2 = µ4g4+(γ2+1)g2 6∈ Γ.

Similarly we obtain Cg3 + h4g4 + h3g3 = µ2g2 + (γ4 + 1)g4 6∈ Γ.

Therefore the minimal elements of Γ \Ap(S) are h2g2 + (γ3 − C + 1)g3 and h4g4 +
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(γ3 − C + 1)g3 and this complete the proof of the �rst part of the Theorem.

For the "moreover" statement notice that, taken f ∈ G homogeneous, then f ∈ (0 :G
zC) if and only if zCf ∈ Ĩ and this happens if and only if the monomials of f are

correnspondent to element of Γ \Ap(S) that means f ∈ (zh3yh2 , zh3wh4).

Using the characterization of the de�ning ideal of A given by the last result we

are able to prove that A has the WLP.

Theorem 3.5.7. Let S = 〈g1, g2, g3, g4〉 be an M -pure symmetric numerical semi-

group generated by 4 elements. Then the ring A associated to Ap(S) has the WLP.

Proof. By Theorem(3.4.8) if Ap(S) = Γ, the ring A is a codimension 3 Complete In-

tersection and therefore it has the WLP. Using the same notation of all this Section,

we call z := x3 and we assume Ap(S) ( Γ.

In this case, by Theorem(3.5.6) there exists a Complete Intersection Artinian stan-

dard graded algebra G such that A ∼= G

(0 :G zC)
for 1 ≤ C ≤ γ3.

Now we can conclude applying Theorem(3.2.2) inductively on C as done in the proof

of Theorem(3.4.12).
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