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Abstract

In this thesis we study instabilities in stratified shear flows where the density stratification is assumed
to be stabilizing. Despite the common idea of buoyancy forces having a restoring effects, in few cases
such stratifications proved to be capable of destabilizing otherwise stable fluids. Here we study two
different systems and how the density stratification affects the stability of their equilibrium solutions.

In the first case we consider the stratified analogue of the Kolmogorov flow which have been
widely studied and shows a rich number of states departing from the laminar solution as viscosity is
lowered. We conduct finer investigation of the series of transition leading to chaotic states, showing
the existence of previously unseen states and proving the chaotic nature of solutions at high Reynolds
numbers. Therefore we compare these results to the route to chaos of increasingly stratified fluids
and observe that stratification does not affect the bifurcations for Richardson number lower than
1073, Whereas new dynamics appear when Ri = 10~2 or greater. We observe that the stabilizing
density gradient increases the critical Reynolds numbers needed to trigger state’s transitions, and

“unlocks” a number of new states inaccessible to the unstratified Kolmogorov flow.

The second part of the thesis is devoted to the analysis of instabilities due to waves generated by
density defects. We consider multilayered fluids with a background linear shear velocity. Layering
is a common structure in natural systems as oceans and lakes. The high density gradient between
each layer supports the formation of Interfacial waves. Thanks to the background shear velocity
these waves can resonantly interact and become unstable (Taylor-Caulfield Instabilities - TCI). The
number of density interfaces in a multi-layered fluid allows a multitude of waves to interact and
produce structures that may affect the stability of the system. In this work the main purpose is
to investigate the susceptibility of a number of constant density layers separated by equally spaced
sharp interfaces to TCI and their subsequent nonlinear evolution. We provide a linear instability
analysis for a staircase with piecewise-constant density profile, allowing for an arbitrary number of
interfaces. The staircase is embedded in a background linear shear flow. For long wavelength, weakly
nonlinear structures in weakly stratified fluid, we study the onset of instability. Fully nonlinear states

are studied numerically in the long-wave and weak stratification limit.
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Chapter 1

Introduction

The hydrodynamic stability studies the stability or instability of given flows in a fluid, and
how the onset of instability can eventually lead to turbulent regimes. Thanks to the pio-
neering works of Helmholtz (1868), Kelvin (1871), Rayleigh (1880) and Reynolds (1883),
interest rose on fluid dynamics across the years, still providing a large number of open
problems. In simple fluid geometries, Navier-Stokes equations have been widely studied,
with scientific community interested in finding simple solutions and their stability proper-
ties. Reynolds work on viscous flows in a Poiseuille fluid illustrated how by tuning a single
dimensionless parameter, containing physical quantities of the fluid geometry, it is possible
to drive the fluid from laminar states up turbulent motions. Inspired by Reynolds’ work the
Orr-Sommerfeld equation - Orr (1907a,b) and Sommerfeld (1908) - has been derived in order

to address the problem of stability of parallel flows to small traveling waves perturbations.

Answer to these questions came from strongly idealized systems, whereas recent works,
supported by modern technologies, account for more realistic and physically meaningful
phenomenologies. A first step in the analysis of flow states is to study their asymptotic
stability, that is trajectories starting nearby converge to the given state eventually. When
the first hydrodynamic stability studies have been proposed, the technique of normal modes
linear stability analysis was already highly developed for system of particles and rigid bod-
ies. Stability of a given state is investigated by adding a normal mode perturbation of
small amplitude. Governing equations are simplified by neglecting the products of pertur-
bations. It is also assumed that time dependence of these modes is exponential - i.e. e™**

where w is their growth rate. This quantity can be complex and when w > 0 arbitrarily

9



10 CHAPTER 1. INTRODUCTION

small normal modes are unstable, that is they will grow exponentially until are no longer
small and nonlinearities are no more negligible. The aforementioned works, inspired by
this analysis, introduced the method of normal modes to fluid dynamics. The transition
from ordinary differential equations, describing particles and rigid body physics, to partial
differential equations, typical in continuum mechanics, marked a perilous path for hydro-
dynamic stability which have been overcome only in few (simple) flow configurations. In
these cases the mathematics is simple enough to provide a detailed stability analysis, where
informations as wavelength, growth rate, phase speed of unstable waves can be computed
analytically or numerically. Disturbances detected by the linear stability approach can grow
until becoming strong enough that their products in the governing equations are no more
negligible. Therefore nonlinear phenomena saturate the disturbances to finite amplitude
equilibrium states. In some cases the new state may suffer secondary instabilities possibly
reaching another steady state, and so on. Finally, the flow has so many large disturbances
with random phase that its state becomes chaotic. The linear stability analysis of nor-
mal modes perturbations therefore examines only the initial behavior of the disturbances.
When laminar states become unstable, it is not granted the flow reaches turbulent states
and when it does only in few simple cases linear stability can describe the very beginning
of the process of transition to turbulence. Another deficiency of the method is that it may
predict stability of infinitesimal disturbances (linearly stable), while misses instabilities due
to sufficiently large disturbances (nonlinearly unstable). Despite its limits, linear stability
theory is a powerful tool that proved its reliability also in the description of natural phe-
nomena and laboratory experiments. For example, there is a striking agreement between
prediction of thermal convection instabilities in a fluid layer and experiments. Or the onset
of the Tollmien-Schlichting waves (see Tollmien (1929) and Schlichting (1933)) in a viscous
boundary layer, which have been observed experimentally in Schubauer and Skramstad
(1947). Moreover people suggest that in Taylor (1923) the first rigorous confirmation of
Navier-Stokes equations comes from the striking theoretical predictions of secondary flow

instabilities in a rotating Couette flow.

A particular class of fluid that have been widely studied is that of steady two-dimensional
flows with parallel streamlines. In this analysis a cornerstone work is Reynolds (1883) where
he investigated experimentally the stability of parallel flows with or without inflection points

in their profile, for both inviscid and viscous fluids. He observed that in the first case,
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viscosity suppresses any instability whilst inviscid fluid show turbulence. In the second
case, instabilities were readily available for any viscosity. This results are in line with
Rayleigh (1880) inflection-point theorem for inviscid fluids.

The main purpose of this thesis is to investigate the impact a stabilizing density stratifi-
cation has on the stability of laminar states in shear flows and transition to chaos. Stratified
shear flows are a common stable structure observed in lakes, oceans, atmospheres and stars.
Seasonal temperature variations regulate the density structure in lakes, whereas tempera-
ture and salinity are the key scalar fields in oceans. The density stratification of our atmo-
sphere is due to its chemical composition and thermal interaction between its constituents
and sun radiation. In stars interiors the interaction of light and particles produced by nu-
clear fusion with outer layers is what builds up a star density stratification. Stratified fluids
are also part of our daily life, just think about pouring coffee in your glass of milk. These
examples give an idea on how common and important these structures are. When these
structures are perturbed by some external forces, internal waves are generated. These ubiq-
uitous motions take many forms, and they must be used to describe phenomena ranging
from the temperature fluctuations in the deep ocean to surface waves generated by wind

blowing to the formation of clouds in the sheltered side of a mountain.

We consider density stratification of stabilizing effect, therefore heavier fluids lay below
lighter ones. Without any external influence such stratifications are globally stable. To
produce any new configuration of the fluid there must be an external energy input which
counterbalance the restoring effect of buoyancy forces. In this work we consider two fluid
configuration of a stratified shear flow: we consider two different shear and density profiles.
In the first case we chose a simple linear density stratification which stabilizes a background
shear which periodically changes direction - the so called Kolmogorov flow. It presents a
number of inflection points from which instabilities comes from. This structure shows a rich
variety of states before chaotic solutions appear and we will study how the transition to these
states is affected by a stabilizing density gradient. The second case consider an unbounded
linear shear with a number of density interfaces separating constant density layers. At each
interface the layer above is lighter than the layer below, therefore the density staircase is
stable. On each interface reside internal gravity waves of which propagation velocity is

Doppler shifted by the background shear.

In the first case we investigate the stability of a shear flow which satisfies the necessary
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condition of Rayleigh’s inflection-point theorem. It is one of the few general results end
exact solution of the Orr-Sommerfeld equation. It has been introduced by Kolmogorov
and first studied by Meshalkin and Sinai (1961). It is a two-dimensional incompressible
viscous shear flow in which the velocity has alternating directions. The linear state is
of sinusoidal form (U,0)  (cos ny,0) and is usually referred as Kolmogorov flow. This
particular shear configuration can be realized by magnetic forces applied to an electrolyte
fluid - see Bondarenko et al. (1979) and Suri et al. (2014) - or on wind driven soap films
(Burgess et al. (1999)), but it also have been successfully used to describe geophysical
systems (Manfroi and Young (1999)) and astrophysical systems (Garaud et al. (2015)) as
well. The presence of a number of inflection points make the Kolmogorov flow readily
unstable and, as have been shown by Franceschini et al. (1984), Okamoto and Shoji (1993)
and Armbruster et al. (1996), it supports the formation of a number of stable states when
viscosity is lowered, until it is small enough to show turbulent behaviors. Our intention
is to study the effect of a stabilizing stratification on stability and dynamics of a shear
flow is therefore realized by superposing a background vertical density stratification to the
Kolmogorov flow. A key parameter that measures the gradients of density stratifications is
the Richardson number, for which a stability criterion exist: there exist global stability if
the local Richardson number is everywhere greater than or equal to on quarter. This suggest
that if we consider strong enough density gradients the background Kolmogorov become
stable for any viscosity. As we already mentioned, most of the attention was on unstratified
realizations of the Kolmogorov flow and few works introduced stabilizing stratifications, all
of them accounting for weakly stratified fluids. Here we progressively increase the density
stratification, being careful to not overcome the Richardson number stability criterion. We
observe an overall increase in the Reynolds number necessary to trigger instabilities and an
increased number of available states in between the laminar Kolmogorov flow and chaotic

states.

In the second case we study the stability of interfacial waves in a stratified shear flow
where the density profile takes the form of a staircase of interfaces separating uniform layers,
such as may arise from double-diffusive processes in lakes and oceans. Internal gravity
waves riding on density interfaces can resonantly interact due to a background shear flow,
resulting in the Taylor-Caulfield instability. The classical Kelvin-Helmholtz instability is

the most well-known variety of stratified shear instability and is commonly interpreted at
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the resonant interaction of waves riding on vorticity interfaces. Holmboe waves (HWI)
are the next most studied type of instability, arising when a wave on a vorticity interface
resonantly interacts with a gravity wave lying at a density interface Holmboe (1962). KHI
and HWI are considered robust instabilities in the sense that they have been observed in
natural systems and experiments.

Taylor (1931) also pointed out the possibility of a third instability in which waves riding
on density interfaces could resonantly interact when their phase speeds become locked due to
the Doppler-shifting effect of a background shear flow. This instability has been more elusive
to observe, with the scientific community more concerned with why one might find basic
states with layered density profiles in the first place. Taylor’s instability was quantified and
studied in more detail by Caulfield (1994), in parallel with some first laboratory experiments
Caulfield et al. (1995) and nonlinear simulations Lee and Caulfield (2001). Balmforth et al.
(2012) provided a comprehensive study of TCI in the long-wave limit that two density
interfaces were considered as a stratified “defect” in the shear flow.

Here we explore the linear stability and nonlinear evolution of multiple TCI growing on
layered density profiles. We consider a density staircase with equally spaced steps of equal
size superposed on a background linear shear flow. We study normal mode solutions of the
incompressible 2D Navier-Stokes and heat equations under the Boussinesq approximation.
Our results show a predominance of near-neighbor interfaces TCI which are particularly
strong in the limit of small bulk Richardson numbers and wavenumbers. This limit allows
to consider the defect theory approximation Balmforth et al. (2012) where by a multiple scale
expansion it is possible to reduce the governing equations to a Vlasov-like problem. This
limit allow us to study the nonlinear evolution of internal gravity waves of large wavelength

and their mixing effect.

Formulation of the problem: We consider the incompressible Navier-Stokes equations
on the plane (z*,y*) with a gravity field —g along the cross-stream direction y. To ac-
count for density variations we use conservation of energy. The Boussinesq approximation,

adopted here, relies on the linear relationship between density and temperature
p(I7) = pr {1 —ap(T” - Tp)}, (L1)

where T, and p, are reference temperature and density, a7 is the thermal expansion coeffi-

cient - typical value for fresh water at 20 is 2.1 x 107*K ™! - and the basic density profile is
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given by po(y) = p(T). The magnitude of oz allows to neglect density variations induced
by temperature, except that in the buoyancy term in the Navier-Stoke equation. Through-
out this work we also neglect contributions from other sources of density stratifications as

salinity. The resulting system, written under these approximation, is

ou* 1 g
+u" - V'u* + —V*p* =" A*u* — =(p* — p))y + Fx, 1.2
e VP pr( o)y (1.2)
V*ut =0, (1.3)
a *
855)* +u* - V" = k3 A%, (1.4)

where the star is for physical quantities. The velocity field is u* = (u*,v*), p* is the
pressure scalar field, p* is the density of the fluid and .# is an external forcing acting on
the fluid. The material parameters are v*, the kinematic viscosity, and 7., the thermal
conductivity. The divergence-free condition (1.3) of the velocity field allows to introduce
the streamfunction vector potential u* = V* x (—¢* E) where because of the planar nature
of the fluid reduces to a scalar field. We also consider the vorticity field ¢* k = V* x u* and

taking the curl of equation (1.2), of u* = V* x (—¢* ﬁ) and expressing ¢* in (1.4) we get

%'Fd)zcy_d)ny:VAC _g;_ﬂya (1.5)
=A%, (1.6)

8 - k) 3k Xk * ko k
6_/15)* + djzﬂy - d)ypx =r"'A ’ (17)

which are the governing equations for both problems under consideration in this thesis. For
each of them, in the respective chapters, we suit the specific external forcing and boundary

conditions to produce the basic states we want to investigate.

Outline of the Thesis: This work is subdivided in two main parts: Chapter 2 is devoted
to the analysis of the route to chaos in a stratified Kolmogorov flow; in Chapter 3 the
stability properties and nonlinear dynamics of Taylor-Caulfield Instabilities in a multilayered
fluid are studied. The two Chapters are related to shear instabilities in stratified fluids, they

have different equilibrium states and we study different aspects of their dynamical behavior.
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In Chapter 2 we consider a two-dimensional fluid exposed to Kolmogorov’s forcing
cos(ny) and heated from above. The stabilizing effects of temperature are taken into ac-
count using the Boussinesq approximation. The fluid with no temperature stratification
has been widely studied and, although relying on strong simplifications, it is considered an
important tool for the theoretical and experimental study of transition to turbulence. In
this thesis we are interested in the set of transitions leading the temperature stratified fluid
from the laminar solution (U o (cos(ny),0), Toc y), to more complex states until the onset
of chaotic states. We will consider Reynolds numbers 0 < Re < 30, while the Richardson
numbers shall be kept in the regime of weak stratifications (Ri < 5-1073). We will first
review the non-stratified Kolmogorov flow and it is the case that this prior analysis unveils
few details that went unnoticed in previous works, and that will play a role in the strati-
fied fluid counterpart: we find a new period-tripling bifurcation as the precursor of chaotic
states. Introducing the stabilizing temperature gradient we shall observe that higher Re are
required to trigger instabilities. More importantly we shall see new states and phenomena:
the newly discovered period-tripling bifurcation is supercritical or subcritical according to
Ri; more period-tripling and doubling bifurcations may depart from this new state; strong
enough stratifications trigger new regions of chaotic solutions, and on the drifting solution
branch, non-chaotic bursting solutions. In our analysis we consider three possible stratifica-
tion: ) Ri=0.0001 which have negligible effects on the set of transition; #) Ri=0.001 which
has modest differences compared to the unstratified counterpart and iii) Ri=0.005 which

shows appreciable departures from the bifurcation diagram of the original Kolmogorov flow.

In Chapter 3 we study the stability of interfacial waves in a stratified shear flow where
the density profile takes the form of a staircase of interfaces separating uniform layers, such
as may arise from double-diffusive processes in lakes and oceans. Internal gravity waves
riding on density interfaces can resonantly interact due to a background linear shear flow,
resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a
multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield
instabilities. We provide a linear instability analysis for a staircase with piecewise-constant
density profile, allowing for an arbitrary number of interfaces. Instability bands in the
parameters’ space and relative growth rates are found, elucidating the strongest and most
common instabilities. We test the robustness of these results by looking at two possible

generalization of the system’s geometry. In one case we consider uneven thick steps and
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by considering a statistical number of realization of imperfect staircases we compare the
results of the linear stability analysis to the ones relative to the evenly spaced staircase.
In second instance we consider finite thickness continuos interfaces where we compare the
case of the classical single TCI (two sharp interfaces) to a system with two piecewise-linear
interfaces. For long wavelength, weakly nonlinear structures in weakly stratified fluid, we
study the onset of instability. Under these approximations, that consider the staircase as
a horizontal “defect” of the density field, we derive a simplified version of the system’s
governing equations. The defect equations are then used tu study the onset of instability
for different shapes and size of interfaces and inviscid or viscous fluids. We observe that
their thickness regulates the bifurcation point and slow down the growth of instabilities,
whilst strong enough viscosities play a dramatic role on the stability of internal gravity
waves allowing resonance-induced instabilities as well as lone waves instabilities. Next step
is to move slightly from the linear regime towards the nonlinear one, indeed we accomodate
a weakly nonlinear expansion around the equilibrium state and near its bifurcation point
in order to describe the dynamics of the secondary state departing from the bifurcation
point. Fully nonlinear states are studied numerically in the defect approximation, testing
the results of the linear stability analysis and elucidating the mutual interactions of Taylor-
Caulfield billows within the layers.

Finally, in Chapter 4 we summarize the whole thesis and discuss future issues.



Chapter 2

Part I: Stratified Kolmogorov Flow

2.1 Introduction

We study the route to chaos of the Kolmogorov flow under the effect of density gradi-
ents. The Kolmogorov flow is a two-dimensional incompressible viscous flow on the torus

3 cos ny, 0),

(x,y) = [0,27/a] x [0,2x] driven by the streamwise monochromatic force (n
being a the aspect ratio of the torus. It was introduced by Kolmogorov in 1959 Arnol’d
and Meshalkin (1960) as a toy-model capable to ease the mathematical difficulties of the
full NS equations, but still possessing the turbulent regimes typical of the NS solutions.
The non-stratified Kolmogorov problem has been extensively studied in both laminar and
turbulent regimes. For flows on the domain R x [0, 27?] the possible destabilization of the
laminar solution (U,0) = (ncos nz,0) was studied by Meshalkin and Sinai (1961). On the
contrary, when the period number and the aspect ratio are both equal to 1 (n = a = 1),
the global stability of the laminar state holds for each forcing amplitudeMarchioro (1986).
When a < 1 the stability of the secondary state has been studied by weakly non-linear
methodsSivashinsky (1985); Nepomniashchii (1976). The non-linear dynamics for higher
Reynolds numbers has been investigated via numerical simulationArmbruster et al. (1996);
She (1987); Nicolaenko and She (1990); Platt et al. (1991) showing the emergence of com-
plex time-dependent structures. The appearance of these states was also described by a fi-
nite dimensional dynamical systems approachFranceschini et al. (1984); Kurganskii (1980);
Gambino et al. (2009); Lucas and Kerswell (2015) and by multiple-scale analysisSivashinsky
(1985).

One of the features of the classical Kolmogorov model is to coalesce small scale struc-

17



18 CHAPTER 2. PART I: STRATIFIED KOLMOGOROV FLOW

tures to the largest scale available to the physical system. For this reason the model has
been used to understand coalescence effects observed in many fields of fluid dynamics. For
example, Kolmogorov’s model has been applied in geophysical fluid dynamics to study
the stability of finite-amplitude Rossby waves in the atmosphere Lorenz (1972) and to see
whether baroclinic instabilities might cascade into easterly flows of planetary-scale Manfroi
and Young (1999). The model was also reproduced in laboratory showing the effect of drag
forces on the linear stability of the laminar solutionBondarenko et al. (1979) . This external
effect may be removed using immiscible multilayer fluidsSuri et al. (2014) or by driven soap
filmsBurgess et al. (1999). We also mention the fact that, to mimic and study the stability
of zonal jets along the tropopause, the Kolmogorov flow, in a laboratory experiment, has

been induced on a spherical surface Batchaev (2012).

The stratified counterpart of the Kolmogorov flow, which is the subject of our analysis,
has been reproduced in laboratory experiments in the limit of weakBatchaev and Kurgansky
(1986) as well strongBatchaev et al. (1984) stratifications. In the former case, experiments
show the critical Reynolds number for the linear instability of the laminar flow to increase
with the Richardson number; in the limit of Ri < 1, and accounting for the wall friction
effects, the prediction of theory match with experimental observations. In the latter case
of strong stratification, the wall friction is irrelevant for the linear stability of the laminar
solution. This has been observed also by solving the eigenvalue problem of the stratified

Kolmogorov model affected by a linear dragPonetti et al. (2014); Caillol (2005).

Concerning the non-stratified Kolmogorov flow, different parameters set-up have been
considered: the domain aspect ratioLucas and Kerswell (2014); the inclination of the
forceFranceschini et al. (1984); and its periodicityThess (1992). In the space of m-rotation
invariant solutions the effect of the aspect ratio (a < 1) on the bifurcations cascade has been
studiedOkamoto and Shoji (1993). Without this symmetry restriction, in the low Reynolds
number range (Re < 30), and fixing o = 1 and n = 2, the bifurcations diagram has
been constructed via symmetry group analysis, while chaotic states have been analyzed via
Karhunen-Loeve expansionsArmbruster et al. (1996). For fluids affected by external forcing
inclined with respect to the axes and period n > 1, the appearance of time dependent solu-
tions was also described in terms of finite dimensional dynamical systemsFranceschini et al.
(1984). For fully developed turbulence, recurrent unstable solutions are extracted from the

fluid motion in order to mimic the possible turbulent trajectories of the flowChandler and
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Kerswell (2013).

On the other hand, in the density stratified Kolmogorov flow, the bifurcations leading to
chaotic states have not been studied. In this chapter we shall be interested in the bifurcations
that occur at low Reynolds numbers (Re/Re. < 21), when the Kolmogorov flow is induced
in a fluid where the stratification has a stabilizing effect: the density decreases with height.
Therefore the main topic of this chapter is the set of bifurcations leading from laminar

solutions toward weakly chaotic states.

We shall describe the base density profile as a linear function decreasing from the bot-
tom to the top of the fluid. More specifically we shall fix our model to the configura-
tionArmbruster et al. (1996) a = 1 and n = 2. This model has geophysical application
related to the stability of internal gravity waves with finite amplitudeKurganskii (1980) and
vertical shear flowsDavis and Peltier (1976). We recall the fact that the primary bifurca-
tion, in the limit of very weak density gradients, has been investigated using linear stability
analysisBalmforth and Young (2002). Weakly non-linear theory leads to the Cahn-Hilliard

equation and show the effect of the stratification as regulator of the inverse energy cascade.

The first part of the chapter is devoted to a review of the bifurcations diagram of
the non-stratified flow. In the second part of the chapter we shall consider the range of
Richardson numbers Ri < 5-1073. Concerning the non-stratified problem we will show the
presence of a period-tripling bifurcation that went unnoticed in previous works and use the
Lyapunov exponents analysis to prove the chaotic nature of a further bifurcation departing
from the period-tripled state. This bifurcation is a rare transition toward chaotic states
in fluid dynamical systems, even though it can be found in other fields. It is a common
feature in directly modulated diode lasersLamela et al. (1998); Goswami (1995) and the
process of period n-tupling is a feature of the Toda oscillatorGoswami (1998). In the field
of fluid dynamics it has been observed (together with period-doubling and quintupling)
in Rayleigh-Bénard convectionLibchaber and Maurer (1982) and in sinusoidally varying
volumetric flow induced in curved tubesHamakiotes and Berger (1990). Moreover non-linear
mode interactions produce period-tripling flutters in transonic flowsBendiksen (2004). It
is not clear whether a route to chaos could be driven by a period-tripling cascade as in
the period-doubling Feigenbaum scenario. However period tripling has been observed as a
'window’ in the Feigenbaum route to chaos where, for a range of the control parameters, the

system reaches a periodic motion from a more chaotic stateLamela et al. (1998). Concerning
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the stratified Kolmogorov flow, we shall compare the bifurcations to the non-stratified fluid
scenario and analyze the new transitions allowed by introducing the temperature gradient.
Beside the obvious observation that higher Reynolds numbers are required to trigger the
instabilities, we shall see that, increasing the temperature gradient, a richer variety of states

leads eventually to the chaotic attractors.

The outline of the chapter is as follows. In Section 2.2 we state the problem under
investigation. The 2D incompressible Navier-Stokes equations and the energy conservation
equation are presented; the Boussinesq approximation is introduced leading to the PDE
system (2.2)-(2.3); finally the numerical algorithm we use to solve it is briefly described.
In Section 2.3 we give a detailed review of the non-stratified Kolmogorov flow, elucidating
the states corresponding to each bifurcation in the low Reynolds number range Re < 30
and presenting a newly observed period-tripling bifurcation. In Section 2.4 we present our
numerical results and show that besides, an overall stabilizing effect, some states are stable
in smaller regions of the parameters and instabilities can lead to new states as non-chaotic

bursting and cascades of period-doublings and triplings.

2.2 Formulation

In this problem the background shear velocity is of sinusoidal form and is produced by the
external force F = yn3 cos(2mny*/L,) which points towards the horizontal direction. Here

v is the force magnitude and n its vertical periodicity. The shear streamfunction is
. L3 2
T

which is usually called the Kolmogorov flow. The scalar fields are defined on the doubly
periodic domain (z*,y*) € [0, L,] x [0, L,] where a = L,/L, defines the aspect ratio. We
consider the effects of a stabilizing temperature gradient: the fluid is cold (7}) at the bottom
and warm at the top (7%), thus Ap = Ty — T, > 0. We assume that the basic temperature
gradient over the length L, is given by the linear interpolation 7§ (y) = 1, + AT y/L, and
perturbations from the basic state are T*(z, y,t) = T (y) + AT 0(x, y,t)/2m.

Equations (1.5)-(1.7) are nondimensionalized using L, /27 as lengthscale, 27v/yL, as
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timescale, 'ng /8m3v as reference streamfunction and AT/27 as scale temperature, giving

9¢

S+ Re (a2, — W, Z,) = AC+ RiRe 0, ¢ = Ay, (2.2)
00 Af
En + Re (W0, + V,0,) = B + Re )y, (2.3)

where U(z,y,t) = sin ny + ¥ (x,y,t), being 1 (z,y,t) the deviation of the streamfunction
from the laminar state and 6(x,y,t) the deviation of the temperature from the stabilizing

profile. The nondimensional parameters

2 2 3
Re=" (%) , Ri= géAT (5) @—W) , Pr=2, (24)
¥ T ™ Y Y KT

are respectively the Reynolds number, the Richardson number and the Prandtl number.

Here we followArmbruster et al. (1996) and fix the period of the external force n = 2 and
choose the aspect ratio @ = 1. To avoid formation of thermal boundary layerBalmforth and
Young (2002), we state the Prandtl number to be 1.

The above system is characterized by the symmetry
y : ($7y7 1/}7 0) % (_377 _y+ﬂ-/n7,¢}7 _6)7 (2'5)

which represents the combination of a reflection in the (z,y)-plane with the vertical shift
of half of the wavelength of the forcing function. Other symmetries are a rotation of 7 in

the (y, v, 0)-plane
X :(x,y,10,0) = (x,—y, =1, —0), (2.6)

a discrete shift of 27 /n along y
tn: (x,y,9,0) = (x,y + 27 /n,1,0), (2.7)
and the continuous horizontal shift:
T @y, 9,0) = (2 + 1y, ¥,0). (2.8)

The set of bifurcations of the non-stratified Kolmogorov flow has been shownArmbruster

et al. (1996) to be the breaking of these symmetries.

2.2.1 Numerical methods

In this section we present the numerical methods used throughout this work to solve our

model system.The core of these algorithms lies in the computation of (8)-(9) with a dealiased
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Fourier-Fourier pseudospectral code. In this work the bifurcation parameter is the Reynolds
number, whilst the Richardson number is kept fixed to some particular values (Ri = 0, 1074,
0.001, 0.005). For relatively high Re (typical Re larger that 21) chaotic solutions will arise
1,19 and we shall detect transitions to chaos by computing the Lyapunov exponents. In the
next paragraph we present the pseudospectral code that solves the governing equations and

in the consecutive one we present the algorithm that extracts the Lyapunov exponents.

Pseudospectral Algorithm

We solve numerically Eqs.(2.2)-(2.3) with a fully dealiased pseudospectral code with a
second-order semi-implicit time integrator. The spatial discretization is based on a Fourier-

Galerkin spectral expansion

N:v/2 Nll/2

Yy t) = > > u(t)elcrty) (2.9)
j=—Ng/2+411=—N,/2+1
1\/7.1'/2 Ny/Q

Oz, yt) = Y > bu(t)eltedr ) (2.10)

J=—Ng /241 1=—N, /2+1

with resolution N, x N, which is dealiased via the two-thirds rule. Time-integration is
based on a second-order Runge-Kutta algorithm where the discretization of the linear part

is of the Crank-Nicolson type:
4

b o k n Tn ~n dt
gl',l S [—k;Qd,j;l + dt <7 7+ Re Jjjl(\IJ,A\I/) zaijReé' )] / (1 + _kz) K2,

(2.11)

dt

~ k2 ~
0}, = [ejﬁdt <—ﬁ9ﬂ+ReJ L(T,0) + icj Rey)? ,)} / <1+ 5P k2> k2, (212)

w“ [ k2¢],+ dat (k‘*zpﬂ + Re J%(W, AT) + Re J} (¥, AD)

—iajRiRe}; - iajRiRe), )| / ( ) K2, (2.13)
e dt —'“—29" + Re J',(0,0) + Re J,(T,0)
) 2 Pr N 75l ) 7,0 ’
~ N dt
+ iajRedl +iajRedl)| / (1 + 5pk )k: , (2.14)

where j}y(a, b) = ££t[J(a,b)];, and the superscript indicate the nth time-step. The wave-

vector is k = («j,l) and the Fourier modes are such that 12)\0,() = 0 and the Hermitian
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condition J_j,_l = 121\;1 holds true. The number of effective degree of freedom is therefore
Ny(2N, — 1) + 2. Typically the grid is N, = N, = 64. We have checked that our results
are grid independent.

We shall construct the bifurcation diagram using the L?-norm of the streamfunction )

and temperature # which are given by

N./2 Ny /2 N./2 Ny /2
R S lh e = > >l (215)
j=—Ng/24+11=—N, /241 j=—Ng/24+11=—N,/2+1
Defining X as
X = @f (2.16)
0

its L2-norm is given by || X3 = ||v]13 + ||0]3-

Chaos diagnostic

When we study chaotic motions it is useful to find quantities that can measure it, and
an effective diagnostic for chaotic systems is the study of the sign of Lyapunov exponents.
The idea is to consider a trajectory of the solution of a dynamical system, perturb it of
an infinitesimal amount and measure in time how this perturbation evolve. It is in the
definition of chaotic states that infinitely near trajectories diverge eventually, therefore we
measure the growth or decay of these small perturbations. Given an initial value Xy in
the phase space its evolution is given by X, 11 = f(X,). If the vector 5X7(1j ) is a small

perturbation from X, in the j-th direction we find that
5X{) = Dfx, ,6X9 = Dfe sx{. (2.17)

This is the vector we keep measure of and defines the Lyapunov exponents spectrum
{1, A2, ...y A}, where Ay > X9 > -+ > Ay, and

1 n :
—log | Df%,6X5||. (2.18)

:|:>\j = lim
n—+oo |n|

)

The associated perturbation vector in X,,, 5X7(1j , is the Lyapunov vector which point to-
wards the direction j where the perturbation grows at a \; rate.

The algorithm to extract these valuesWolf et al. (1985) takes a post-transient initial
condition Xy and a ball of initial perturbations (5Xéj ) and evolves the former by using
the pseudospectral code we presented in the previous paragraph and the latter using their

linearized instance.
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2.3 Kolmogorov Flow

The non-stratified Kolmogorov flow is an important model that has been used to investi-
gate transition and turbulent phenomena in the Navier-Stokes equations. In this Section,
following the work of Armbruster et al. Armbruster et al. (1996), we shall characterize the
sequence of bifurcations that, starting from the destabilization of the equilibrium, leads to

weak turbulence.

2.3.1 Main states and routes to chaos

The solutions of the Kolmogorov flow for Re < 30 are schematically reported in Fig.2.1
where we show their bifurcation diagram. We control the solutions by the Reynolds number
and track them by ||¢]|2. For graphical purposes, when 1 is time dependent, we report a

suitable time average of ||¢||2. In Fig. 2.1 one can recognize the following main states:

1. for Re < 5/4/6 a sinusoidal shear velocity profile, commonly referred to as the Kol-

mogorov flow, with the same shape of the external force;

2. above this threshold it appears a stationary pattern (denoted, in Fig.2.1, with a solid

black line) consisting of dipoles, i.e. two couples of counter-rotating vortices;

3. this state bifurcates to dipoles drifting along the horizontal direction denoted, in

Fig.2.1, with H;

4. then a hysteretic bifurcation leads to steady states denoted, in Fig.2.1, with the solid
black line between the points S1 and S2; the oscillatory states that follows, are denoted

with o. For higher Re two branches develop:

5. the upper branch is characterized by a drifting and oscillating solution (denoted, in
panel c¢) of Fig.2.1, with the M between the points D3 and D4) that eventually becomes

chaotic;

6. the lower branch begins with solutions (denoted, in panel c¢) of Fig.2.1, with the v
between the points S4 and S5) that translate vertically while pulsating, and that, for

high Reynolds numbers, become chaotic.
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Figure 2.1: In panel a) the full bifurcation diagram for the non-stratified Kolmogorov. In the

horizontal axes the Reynolds number while in the vertical axes we report the L?-norm of the stream

function. Panels b) and c¢) are magnification of relevant parts of the bifurcation diagram. The

solid black line is the steady state solution departing from the primary bifurcation of the laminar

state and for the solution appearing through hysteresis from the drifting state in S1. (M) is for the

first and second drifting state and (OJ) is an oscillatory drifting state which become chaotic through

intermittency (x). (o) is for the Hopf bifurcation of the steady state and (e) for the gluing process

of the Hopf solutions. (V) stands for stable glued states. (%) is the period-tripled state and (x) is

its chaotic bifurcation.
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Here we also mention that we have found one of the oscillatory states to undergo a period-
tripling bifurcation. This is a transition which went unnoticed in previous works and that
will be analyzed in more detail in the next subsection.

The fluid reaches chaotic regimes following two different routes: The first departs from
steady state solutions (in panel b of Fig.2.1 these states correspond to the points between
S1 and S2). The second departs from the horizontally drifting states that, in Fig.2.1, are
denoted with M. The latter route is characterized by the features typical of the Pomeau-
Manneville scenario, where transition to chaos is due to intermittency. In this case the
final chaotic states have been analyzedInubushi et al. (2012) through the computation of
the Lyapunov exponents.

The route to chaos departing from the steady states, on the other hand, has not been
extensively studied. A previous workArmbruster et al. (1996) shows that symmetries in the
governing equation allow four steady state solutions. These undergo four simultaneous Hopf
bifurcations (the point S2 in Fig.2.1) and the resulting oscillatory solution has null mean
velocity, in both vertical and horizontal directions. At larger Re this limit cycles merge
through the so called gluing bifurcation, that occurs between S3 and S4. The physical
behavior of the fluid during this process is a vertical and horizontal motion which switches
randomly its direction (see Fig. 2.2). Raising the Re, this random switching disappears
and the system stabilizes to a periodic oscillation with a bulk vertical drift (both upward
and downward motions solutions are allowed) and null horizontal mean velocity. Finally,
this state loses its stability. The further dynamics for higher Re has not been investigated
in literature. In this work we shall refine the analysis of this branch and we shall see how
limit cycles undergo a period-tripling bifurcation after which the system becomes chaotic.

This will be seen via the Lyapunov exponents analysis.

2.3.2 Details on the transitions

This subsection is devoted to a more detailed explanation of the set of transitions presented
in Fig.2.1. On a horizontally unbounded domain (o = 0), the Kolmogorov flow loses its
stability at Rel"’ = v/2 which is a result proved by continued fractionsMeshalkin and Sinai
(1961). In this chapter we focus our attention to the aspect ratio o = 1 and forcing period
n = 2. In this case, through Galerkin projection, a 5-dimensional dynamical system has

been derived Armbruster et al. (1996), whose linear stability analysis shows the bifurcation
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Figure 2.2: Time evolution of [|1)||2 for any stable state of the Kolmogorov flow when Re < 30.
The labels are associated to: a) first steady state at Re = 2.5; b) first drifting state Re = 12; ¢)
second steady state Re = 15.4; d) periodic orbit Re = 16.95; e) glued periodic orbit Re = 21; f)
period-tripled state Re = 21.3557; g) second drifting state Re = 21.2; h) oscillating drifting state
Re = 24.

parameter to rise to Re. = 5/1/6. We name this point P1 (not shown in the Figure) and
indicate its corresponding parameter value by Re(P1, Ri = 0) = 5/4/6. Above this value the
laminar state Wy = sin ny bifurcates towards a steady pattern of vortices (see Fig.2.3): along
the horizontal direction there is a couple of vortices with positive and negative vorticity, a
dipole; along the vertical direction there are two dipoles (we recall that the external forcing
is doubly-periodic). Curve a) of Fig.2.2 shows the time evolution of the L?-norm ||¢)||o of
a random perturbation of ¥y when Re = 2.5. Solutions belonging to this branch have the
Tn S Y(2,y,1) = (2 + 7, —y + 7/n,t) = V(2,y,t), TeRY(2,y,t) = —(z + 7, —y,t) =
Y(x,y,t) and to)(x,y,t) == —(z,y + m,t) = Y(z,y,t) symmetries. When the Reynolds
number increases, the dipoles lose their broad horizontal structure and in D1, at a parameter
value of Re(D1,0) = 8.3, they bifurcate to a stable drifting state. The solution loses its
symmetries . and tg, allowing four horizontal drifting statesArmbruster et al. (1996), which
involve modes with time-depending amplitude as shown in panel d) of Fig.2.4. Two waves
come from the action of . and two from 5. In panels a)-c) we see three snapshots of the
solution, taken during a period of translation. In panel e) we keep track of the horizontal

position of the extrema of the vorticity, and one can see how they drift to the left as time
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Figure 2.3: Vorticity field ¢(z,y) of the stable steady state when 5/v/6 < Re < 8.3: in a) Re = 2.5
and in b) Re = 8.2.
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Figure 2.4: Drifting solution at Re = 12. In the three top panels there are snapshots taken over a
drifting period of the vorticity: ¢ = 170, 190, 210. Phase portrait of mode k = (1,0) is in d) where
the axes are the real and imaginary component. In e) there is the time-evolution of the horizontal
maximum (red dots) and minimum (blue dots) of the vorticity. In this solution vortices move from

right to left.
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increases. In panel d) we can see the phase portrait of the horizontal mode (1,0) together
with the points where the snapshots have been taken. From curve b) of Fig.2.2 we observe
the L?-norm of 9 to be, after a transient, constant in time (the curve refers to Re = 12).
The time dependent behavior of the modes is not observed in the norm since the modulus
of the real and imaginary part of each mode sum up to a constant.

The drifting state loses its stability at Re(D2,0) = 15.8, and the system shows a hys-
teretic transition toward a steady solution. This state becomes stable at Re(S1,0) = 15.2
where the shift-andOreflect symmetry has been restored and the rotation symmetry % has
been broken allowing four stationary solutions to coexistArmbruster et al. (1996) (coming
from the action of Z and t9). These states, at Re(S52,0) = 16.4, show a simultaneous Hopf
bifurcation toward periodic orbits which are shown in panel a) of Fig.2.5. These oscillations
corresponds, in the physical space, to localized oscillations of the dipoles with a null mean
drift velocity; also in d) of Fig.2.2 one can see periodic oscillations of the L?-norm of 1.

When 16.96 < Re < 17.3 (in Fig.2.1, between S3 and S4), the solution switches ran-
domly between these orbits as shown in Fig.2.6. The merging of the orbits has not stabilized
(as for Re > 17.3), thus in the physical space we observe vortices drifting back and forth
in the vertical direction, as we can infer from the trajectories in panel a) and d) of Fig.2.6.
The phase portrait of the horizontal mode (1,0) is shown in panel d) and the oscillating
horizontal drifting motion of the physical solution can be inferred by the position of the
extrema in panel f).

When, after S4, the merging becomes stable, the Kolmogorov flow keeps only the vortex
oscillations and loses the horizontal drift. This state is stable until Re(S5,0) = 21.35, but
in D3, at Re(D3,0) = 17.8, one can observe the appearance of coexisting stable drifting
states.

These states preserve the same symmetries and properties as before D2. Afterwards,
at Re(D4,0) = 22, the four traveling solutions bifurcate simultaneously to a drift-and-
oscillate state. In Fig.2.2 we plot the L?-norm of the streamfunction for the drifting and
drift-and-oscillate solutions when Re = 21.2 and 24, labelled as g) and h) respectively.
When Re > 25.7, after D5, the flow becomes chaotic via intermittent bursts between
unstable recurrent motions. In this regime the intermittent bursts shown in Fig.2.7 are
trajectories passing nearby four unstable limit cycles. This regime has been proved to be

chaoticInubushi et al. (2012) via Lyapunov exponents analysis.
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Figure 2.5: Phase portraits and trajectories of (Re(%ﬁl),lm(fbg,l)) on the branch with horizontally
steady solutions. From (a) to (f) the Reynolds number is Re=16.42, 16.96, 16.98, 17.4, 21.3, 21.8.
The panel (g) represents the time evolutions of the same modes when Re=16.42, 16.96, 16.98, 17.4.
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Figure 2.6: Snapshot of the vorticity when Re = 16.98 and ¢ = 50 in panel c¢). Horizontal and
vertical average of the vorticity are in e) and b) and the position of their extrema as function of
time (red dots for the maximum and blue dots for the minimum) are in f) and a). The phase plot in
panel d) is given by the real and imaginary part of 7:11\(0,1) and in panel g) there are the trajectories

of the real (black) and imaginary (red) part of ’$(0,1)~
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Figure 2.7: Time evolution of the real (black) and imaginary (red) part of 1//1\0,1 during the inter-
mittent bursts at Re = 25.8.
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Figure 2.8: In panel a) is shown the modulus of Fourier coefficients a,, for ||4||2. Black circles are for
Re = 21.355 and red squares for Re = 21.3575 which are slightly before and after the period-tripling

bifurcation. In panel b) there are the L2-norms for the two Re as function of time.

When the glued state loses its stability in S5 a bifurcation, which was left unnoticed in
the previous literature, appears: it is a period-tripling of the ecarlier glued state. In panel f)
of Fig.2.5 the period-tripling of the phase portrait is evident. In Fig.2.8, panel b), we can
see [|1]|2 for Re = 21.355, and its period-tripled state for Re = 21.3575. The period-tripling
is also evident by the time-frequency analysis of the norm reported in panel a) of Fig.2.8.
The black circles are for Re < Re(S5,0) and they show the fundamental frequency to be
v = 1.063. Above Re(S5,0) the time spectrum is denoted by red squares: the presence of

the frequency /3 implies the appearance of a period-tripled trajectory.

On the right of Fig.2.9 we report the oscillation period T of all the periodic states. Notice
the presence of a gap in the region between S3 and S4 (i.e. for 16.96 < Re < 17.3) because
of the random switching related to the gluing bifurcation. Moreover, at Re(S5,0) = 21.35,

one can see the jump related to period-tripling.

Finally when the period-tripled state loses its stability, the system settles to a chaotic
regime. We have used standard techniquesInubushi et al. (2012); Wolf et al. (1985) to
compute the Lyapunov exponents on this branch and in panel a) of Fig.2.9 we show the
three largest exponents for Re across S6. We see that after Re = 15.53v/2 one of the

exponents becomes positive indicating the solution to be chaotic.
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Figure 2.9: Left panel reports the evolution of the Lyapunov exponents A\; > Ag > A3 > ...
as function of Re/Re., where Re. = /2. In right panel there is the oscillation period T(Re) for
horizontally steady solutions. We compute it from [[¢]|2 (o) and from the physical solution (O).

In the next section we shall introduce the stabilizing linear temperature stratification
and compare the scenario presented in this Section to the new phenomenologies triggered

(or dumped) by temperature variation.

2.4 Weakly stratified Kolmogorov flow

In the previous Section we have reviewed the set of transitions leading the Kolmogorov
flow to chaotic states. In the present Section we shall introduce a temperature gradient
across the vertical y direction. We shall see that the introduction of stratification leads
to the appearance of a variety of states not present in the non-stratified fluid. We shall
present our results, first fixing the value of Ri and then investigating the dynamics of the
transitions for 0 < Re < 30. In this chapter we shall give a detailed account only for
values of 0 < Ri < 5-1073. In fact, for Ri = 1072 or higher, a preliminary investigation
has revealed the emergence of completely new dynamic behaviors with characteristics that
makes it difficult the comparison with the non-stratified Kolmogorov flow. We believe that
the case when Ri > 0.005 deserves a separate analysis that will appear elsewhere.

When the stratification values are Ri < 10™%, our analysis has revealed no significant

change with respect to the case Ri = 0. In fact, when Ri < 107%, the presence of the
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temperature gradient does not change neither the bifurcation points nor the qualitative
characteristics of the states that we have seen for the non-stratified fluid; the effect of the
stratification reveals itself only from the fact that some of the bifurcation points are slightly
shifted in the Reynolds number. To be more precise: the bifurcation points P1, D1, D2
and S1, appearing in the bifurcation diagram at low Re, remain the same (or at least is not
easily detectable) while the bifurcation points appearing for larger Re are slightly shifted. In
Table 2.1 the bifurcation points of the non-stratified and the stratified flows are compared.

For Ri < 107* one can see that the bifurcation points are very similar: the most relevant

Table 2.1: Bifurcation points of the non-stratified and stratified (Ri = 107%, 1072 and 5 - 1073)

Kolmogorov flow.

Ri = Ri=10"1 Ri =103 Ri=5-10"3
Pl 5/V6 = 2.055 + 0.005 2.058 + 0.005
D1 8.3 = 8.43+0.03 8.85 +0.05
D2 158 - 15.35 + 0.05 13.65 + 0.05
D3 17.8  17.87+0.02 18.45+0.05  21.1915 + 0.0005
D4 22 21.9 4 0.1 22.03 £ 0.03 23.85 £ 0.05
D5 257  25.68+0.01  25.0554+0.005  25.155+0.005
S1 15.2 = 14.740.1 13.55 +0.05
S2 164  16.32+0.02 15.95 + 0.05 14.15+ 0.05
S3 1696  16.91 +0.01 16.49 + 0.01 //
S4 173 17.25+0.05 17.31 4+ 0.01 14.743 + 0.003
S4, // // // 15.33 + 0.01
S4., // // // 19.13 4 0.03
S4’ // // 22.3995 + 0.0005  21.67 +0.03
s4” // // // 23.71 +0.01
S5 21.35  21.43+0.01  21.9555 4 0.0005 24.4045 + 0.0005
S6’ // // 22.2835 4+ 0.0005  24.623 + 0.003
S6” // // 22.3245 + 0.0005  24.658 & 0.002
s6” // 22.3335 4+ 0.0005  24.6665 + 0.0005

S6 21.925 21.985 £ 0.005

22.3365 £ 0.0005

24.6685 £+ 0.0005
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feature is the overall tendency of the temperature gradient to reduce the range of values in
which the horizontal drift solutions exist and to broaden the parameter region where the
non-horizontal drifting solutions (steady, oscillating, gluing-oscillating and period-tripled
states) exist.

On the contrary, when Ri = 1073, we shall observe new transitions and new interesting

phenomena; this will be the subject of the next Subsection.

2.4.1 Ri=0.001

When we induce a temperature stratification such that Ri = 1073, the route to chaos is
modified by the appearance of new states. From Fig.2.10 we see that the overall structure
of the bifurcations and the states typical of the non-stratified Kolmogorov flow are left
unchanged; however we shall see how the route to chaos departing from the steady solution
has now a more complex structure. In Table 2.1 we report the bifurcation points we have
found solving the Kolmogorov flow at different Ri, including Ri = 0 which is the non-
stratified case. As we expect from the stabilizing nature of the temperature gradient,
the laminar state bifurcates for Re larger than 5/4/6 and the newly formed steady state
(see Fig.2.11) has the same structure that we have seen at the right of Fig.2.3 for the
non-stratified fluid: two superposed dipoles along the vertical direction. The right panel
of Fig.2.11 shows the temperature variations from the linear temperature gradient. The
highest and lowest temperature deviations appear to be concentrated in the circulating

region between the vortices.

2.4.2 The drifting states for Ri = 0.001

The steady state loses its stability for a Re which is higher compared to the non-stratified
fluid (i.e. Re(D1,1073) > Re(D1,0)). From D1 the drifting state branch departs. As for
the non-stratified fluid, the drifting solution loses its symmetries . and to allowing four
states. The main structure of the horizontal drift is due to the modes k = (1,0) and (—1,0).
In panel a) of Fig.2.12 we show the phase portrait of 12(1,0) and §(170) with their real and
imaginary part on the axes. We can see the circular motion of the components around
the origin which allows the drifting behavior. This motion is confirmed by panel b) and c)
where, for Re = 12, we show the position in time of the extrema of the vorticity and of

the temperature scalar field. We recall that the non-stratified fluid had the drifting state
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Figure 2.10: Bifurcation diagram of the stratified Kolmogorov flow when Ri = 1073 and Pr = 1.
The panels are progressive magnifications of the diagram. The points are the temporal mean of
[IX|l2 for each numerical solution. Refer to Fig.2.1 for symbols legend. Here (—x) is the chaotic
transition of the glued state. The subcritical period-tripling bifurcation is (-0). (—V), (—x) and

(—0O) are the period-doubling bifurcations and (—=) is its chaotic bifurcation.

branch to become unstable in the window Re(D2,0) < Re < Re(D3,0); for Ri = 1073 this
region becomes significantly broader, see Table 2.1. From Re(D3,1073) the drifting state
regains its stability. It maintains the same symmetries as before the bifurcation D2, and

in D4 undergoes a Hopf bifurcation. In Fig.2.13 we can see how the oscillatory behavior
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Figure 2.11: Steady state solution when Re = 8.4, Ri = 1073 and Pr = 1. Vorticity is in the left

panel and temperature variations on the right.

Figure 2.12: Time evolution of the drifting state where Re = 12, Ri = 1072 and Pr = 1. Top
and middle panels are for vorticity and temperature respectively. Over a period length these are
snapshots taken at ¢t = 430, 445, 462. The bottom panels show the horizontal position of the
maximum (red dots) and minimum (blue dots) as function of time. The motion of the vorticity and
of the temperature extrema are shown in panels b) and in ¢) respectively. Real and imaginary part

of the mode (1,0) are shown in panel a) for both stream function and temperature.

mixes with the drifting behavior: there is a vertical oscillation due to mode (0,1); the

horizontal drift behaves as for the purely drifting solution; while mode (1, 1) oscillates while
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Figure 2.13: Oscillating drifting solution when Re = 22.35, Ri = 1073 and Pr = 1. Phase portraits
of modes k = (1,0), (1,1) and (0,1): the axes are the real and imaginary part of U, for the top

panels and ﬁk for the bottom panels.

drifting. We recall that for purely drifting solutions the mode (0, 1) has a constant value
while the phase portrait of (1,0) is a circle. The final bifurcation we observe on this branch
is towards a chaotic attractor in D5, where the drifting-and-oscillating state is destabilized
earlier because of the temperature gradient: Re(D5,1073) < Re(D5,0). The chaotic state

presents the intermittent feature typical of the non-stratified Kolmogorov flow.

2.4.3 Hopf bifurcation, glued states and period-tripling for R: = 0.001

Now we consider the steady state that becomes stable in S1. The main differences in-
troduced by stratification are on this branch and on its transitions. For this increased
Richardson number, as mentioned above, the stability region of the drifting branch shrinks.
On the other hand, the stability region of the steady branch becomes larger. The steady
state bifurcates for Re(S1,1073) < Re(S1,0). After this, it follows the series of periodic
orbit bifurcations similar to what we have seen for the non-stratified fluid; in Fig.2.14 we
present the phase portraits of the real and imaginary part of modes @0,1 and 5071. From

left to right we see: First, at Re = 16.3, the states that had been generated by the Hopf
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Figure 2.14: Phase portraits of the mode k = (0,1) when Ri = 1073, Pr = 1 and Re =
16.3, 16.9, 21.96 (left to right) along the branch with horizontally steady solutions. The axes are the
real and imaginary part of 121\()#1 for the top panels and 50,1 for the bottom panels. When Re = 21.96

the glued periodic orbit (black curve) coexists with its period-tripled state (red curve).

bifurcation at S2 for Re(S2,1073) ~ 15.95. Second the gluing bifurcation at Re = 16.9 and
then for Re = 21.96 we show a glued periodic orbit (black line) together with its period-
tripled state (red line). The Hopf states presents localized oscillations which are shown in
Fig.2.15. Panels f) and 1) show the horizontal position of the extrema as function of time
for vorticity and temperature respectively, panels a) and g) are for the vertical positions.
We see the extrema to oscillate around a position which is constant in time. This behavior
is also evident from the phase plots of Fig.2.15. In fact the modes (1,0) and (0,1) are
localized in the phase plane for both vorticity and temperature, and follow trajectories that
do not embed the origin, and no drift is present. When the Hopf state loses its stability,
and the gluing-bifurcation occurs, we observe global drifts in both horizontal and vertical
directions: this is evident from panels a), f), g) and 1) in Fig.2.16. One can recognize the

same features observed in Fig.2.6. The fluid now drift horizontally at a constant velocity
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Figure 2.15: Time evolution of the Hopf state when Re = 16.3, Ri = 10~2 and Pr = 1. Contour
plots in panels ¢) and i) are the vorticity and temperature. Panels e) and b) show the horizontal and
vertical averages of the vorticity solution and panels k) and h) are for temperature. Panels a) and
f) report the temporal position of the vorticity extrema while panels 1) and g) are for temperature:
red dots are maxima and blue minima positions. The phase portrait of the real and imaginary part

of ¢y, and O, for k = (1,0), (0,1) are shown respectively in panels d) and j).

and, at the same time, vortices oscillate. We can infer this behavior from panel f) and 1)
also. On the other side, along the vertical direction, the fluid inverts it direction of motion
randomly, see panel a) and g). For the non-stratified fluid, after S4, the gluing process
reaches a stable limit cycle which bifurcates supercritically in S5 towards the period-tripled
state. On the contrary, in the stratified case, the bifurcation in S5 is subcritical and the
glued state coexists with the period-tripled state branch until S4". In Fig.2.17 we show
solutions for Re = 21.96, slightly after the period-tripling bifurcation S5, but still on the
branch of the glued state. The horizontal drift stopped, but the vertical is still present, as
we can infer from the phase plots and the extrema time evolution. The glued state persists
until Re(S4',1073) = 22.38, where it reaches a chaotic state. When at S5 the period-tripled
state appears, the overall dynamics of the solution is similar to the glued solution, except
that the cycle repeats itself after three times of the original period: the panels on the right
side of Fig.2.14 compare the phase portraits of mode k = (0,1) for the glued state and its

period-tripled counterpart.
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Figure 2.16: Time evolution of the gluing periodic orbit when Re = 16.9, Ri = 1072 and Pr = 1.
Contour plots represents vorticity solutions in panel ¢) and temperature in panel i). Horizontal and
vertical averages of the vorticity solution are in panels e) and b) and in k) and h) for temperature.
The temporal position of the extrema of the mean fields are reported in f) and a) for vorticity and
1) and g) for temperature. Red dots for maxima and blue for minima. The phase portrait of the

real and imaginary part of zzk and Oy, for k = (1,0), (0,1) are shown respectively in d) and j).

2.4.4 Transition to chaos for Ri: = 0.001

The bifurcations departing from the period-tripled state branch (shown in panel e) of
Fig.2.10) are what makes the main difference from the non-stratified fluid: the transi-
tion towards the chaotic regime (which occurs between S5 and chaotic bifurcation in S6) is
now more complicated. In fact the period-tripled state undergoes, in 56, a period-doubling
bifurcation which is followed by two subsequent period-doubling bifurcations (in 56" and
S56"). After this bifurcation, finally, the branch reaches the chaotic regime, which sets-in
at Re(56,1073) ~ 22.33 > Re(S56,0) ~ 21.92. As we can see in panel d) and j) of Fig.2.18
the vertical wave vector (0, 1) keeps the dynamics of the period-tripled state: it encloses the
origin three times before repeating itself. Before the bifurcation S6 , the horizontal mode
(1,0) has a localized oscillation as one can see in the middle column of Fig.2.17. After the
bifurcation in S6" a horizontal drift superposes to the oscillation, indeed the resulting phase
portrait is a periodic oscillation around a circle centered in the origin - see panel d) and j)

of Fig.2.18. This produces the oscillating horizontal drift as we can infer from the extrema
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Figure 2.17: Glued-state solution when Re = 21.96, Ri = 1072 and Pr = 1. Top panels are for
vorticity and temperature is in the bottom panels. On the left there are time-evolution for the

vertical extrema and on the right for the horizontal ones. Middle panels are the phase portraits for

modes k = (1,0), (0,1).

time evolution in panels f) and 1). The horizontal drift has a long time periodicity which is
not evident from the L? — norm of the system. In Fig.2.19 we show the oscillation period
T of the norm for periodic orbits belonging to the steady branch as function of Re. We
can clearly see the broadening of the steady state branch due to the stabilizing temperature
stratification. As pointed out by the arrows we see also the chain of period-tripling and

three period-doubling bifurcations.

2.4.5 Ri=0.005

We step further and consider a higher Richardson number which is the highest value we
study in this work. Surveying simulations at Ri = 0.01 show a number of states not ascrib-
able to the common Kolmogorov route to chaos so we picked Ri = 0.005 which possesses
the main structure of the non-stratified case, but also introduces important variations to

the route to chaos. Compared to the non-stratified fluid the set of transitions has relevant
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Figure 2.18: Drift-and-oscillating solution when Re = 22.287, Ri = 1073 and Pr = 1. Contour
plots are ¢) vorticity and i) temperature. Horizontal and vertical averages of the vorticity solution
are in panels e) and b) and in k) and g) for temperature. The temporal position of the extrema
of the means are reported in f) and a) for vorticity and 1) and h) for temperature. Red dots for
maxima and blue for minima. The phase portrait of the real and imaginary part of sz and §k for
k = (1,0), (0,1) are shown respectively in d) and j). Panels m) and n) show the trajectories of the

real and imaginary part of mode (1,0) for the vorticity and temperature over a drifting period.

differences, but these mostly affect the branch departing from the steady states. In Fig.2.20
we show the bifurcation diagram where we find bifurcations P1, D1, D2, S1, S2 to be still
present, but shifted in Reynolds number. The main differences lie in the gluing process, in
the stability of the resulting glued state, in its bifurcation and subsequent route to chaos

and in the bifurcation point D3 of the horizontal drifting states branch.

As we may infer from Tab.2.1 and Fig.2.20, the first transitions are slightly shifted
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Figure 2.19: Oscillation period (T') of the horizontally steady solutions versus the Reynolds number.
(O) is for Ri = 0 and (o) for Ri = 1073.

by stratification - larger Re are required to destabilize the laminar solution. The drifting
state branch, lying between D1 and D2, has been shifted to higher Re and shortened in
length while the steady state branch departing from S1 appears at lower Re. As observed
when Ri is smaller, the four steady state solutions undergo a Hopf bifurcation in S2 and
a gluing bifurcation in S3 which settles to a periodic orbit in S4. When Ri = 0.005 the
gluing process between S3 and S4 is suppressed (see panel b) of Fig. 2.20) - the four Hopf
solutions abruptly merge to two glued states. From the same panel we observe a completely
new bifurcation in S4.. The glued state loses its stability, the solution becomes chaotic, and
then the flow recovers its stability in S4/. We show in panel a) of Fig. 2.21 the Lyapunov
exponents of this chaotic window along this branch. We show the three largest exponents
as function of the Reynolds number and observe that A; < 0 everywhere except inside the
window, where the largest exponent (A1) becomes positive, proving these states are chaotic.
In panel b) and ¢) we show the norm |[[1||2 versus ||@||2 near the boundaries of the chaotic
window where we observe the stable solution is the green thick line and the chaotic solution

is the black line.

When the glued state regains its stability in S4, it persists until S4’ where it shows
another difference to the less stratified counterparts. Instead of bifurcating through a period-

tripling, as in the previous cases, it suffers a period-doubling bifurcation as we see in the
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Figure 2.20: Bifurcation diagram of the stratified Kolmogorov flow when Ri = 5-1073 and Pr = 1.
The insets are progressive magnifications of the diagram. The points are the temporal mean of || X |2
for each numerical solution. Refer to 2.1 for symbols legend. The blue branch contains period-tripled

and period-doubled states.

inset of panel a) in Fig. 2.22. This state persist until S4” where it becomes chaotic as we
can see in panels b, ¢, d) on the same figure. Together with the phase portraits we show
the time spectra of || X |2 highlighting the enrichment of frequencies as Re grows. The black
lines in panels b,c,d) mark the case of the stable period-doubled solution. As we see in panel
b), more subharmonics appear and when we look at c¢) we see that the spectra has lot of
noise with the main frequencies of the stable solution still present. In the final case d) the

noise become predominant and most of the characteristic frequencies have been suppressed.

In Fig.2.20, especially in panel d), we see that the chaotic solutions coming from the
period-doubled state disappear until a period-tripled state becomes stable in S5. This
branch is shown in Fig.2.20e and is characterized by three subsequent period-doubling

bifurcations in S6', S6” and S6”. The last stable solution is a period 24th-tupling and is
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Figure 2.21: Chaotic window inside the glued-state branch when Ri = 0.005. In panel a) there
are the three largest Lyapunov exponents A1, A2, A3 for solutions before and after the boundaries
(marked as vertical dashed lines) of the chaotic window. In panels b) and ¢) we show the phase
portrait in the plane of the streamfunction and temperature’s L2-norm. The black lines are for the
solutions inside the chaotic window and the green thick lines are the stable solutions outside this

region. In b) we show norms for Re = 15.2 and 15.4. In ¢) there are Re = 19 and 19.6.

shown in the inset of Fig.2.23 as a green line. In S6 this state lose its stability and becomes
chaotic, as is proved by the Lyapunov exponents in the same figure.

Now we consider the branch of the horizontal drifting solutions. The density stratifica-
tion is finally strong enough to affect the bifurcation points of this branch, in particular a
new state before the bifurcation point D3 becomes accessible. The bifurcation of the four
traveling solutions (that from D3 lead to the intermittent bursting states) are shifted by
the increase of the stratification as we can see from Tab. 2.1. The difference lies in the
appearance, before D3, of a stable branch of bursting solutions, whose L?-norm is shown

in panel a) of Fig. 2.24. This branch, that we have been unable to detect for lower Ri, is
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Figure 2.22: Time spectra and phase portraits of solutions near the bifurcation to chaos S4” of the

period-doubling solution. In the four panels we show solutions at Re = 23.7, 23.75, 23.78 and 23.95.

In the panels we superpose the period-doubled solution of panel a) as a reference.

made of solutions that periodically jump between the four drifting states. For higher Re

the switching between these states is prevented, see panel b) and in D4 they transition to

a periodic orbit solution as we can see in panel ¢). Their further transition to the bursting

solution, which was present also in less stratified fluid and we confirm it is chaotic by the

Lyapunov exponents analysis. In panel e) in figure 2.24 we show the three larger Lyapunov

exponents where one of them becomes positive after D5 (marked as a dashed vertical line).
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Figure 2.23: Lyapunov exponents across the transition to chaos in S6 which is marked as a vertical
dashed line. In the figure are shown the three strongest exponents and in the inset we show the phase
portrait in the (||¢]|2, ||0]|2)-plane of the solution before (Re = 24.6675) and after (Re = 24.6695)
S6.
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Figure 2.24: Time evolution of || X || is shown for solutions on the drifting branch. Solutions refer
to: a) Re = 21.187; b) Re = 21.194; ¢) Re = 25.14; d) Re = 25.18. In b) there is the drifting
solution and in a) its bursting precursor. In c¢) there is the oscillating drift solution and in d) the

intermittent bursting solution.
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Chapter 3

Part II: Multi-layered Fluids

3.1 Introduction

Here we explore a different aspect in stratified shear flows. We want to study the interplay
between internal gravity waves and a background sharing velocity in a multilayered fluid.
Internal gravity waves separates neighboring fluid layers of different density, riding the in-
terface between the two layers where the density gradient abruptly changes - see Sutherland
(2010). The phase velocity of these free waves depends on the density difference between
the layers and is Doppler shifted when a background shear is present. Here we consider
a number of interfaces separating uniform density layers in a statically stable fluid with
an inflection-free shear velocity. Each interface carries two waves propagating in opposite
directions from the background shear at the interface - i.e. there is a fast and a slow
propagating wave per interface. By tuning the Richardson number, that means tuning the
shear rate and/or the density difference between the layers, the phase velocity varies and
when two waves have equal phase velocity, the so called Taylor-Caulfield Instability (TCI),
arises. Its finite amplitude state is an elliptical billow of nearly constant intermediate den-
sity embedded by vorticity filaments which moves at the critical layer velocity. The number
of interfaces we consider here (M > 2) allows multiple resonances at different levels and
different distances. The study of linear stability and subsequent nonlinear evolution of such
interactions is the subject of this chapter.

Resonating waves are key elements for instabilities in stratified shear flows, which can
be explained via the waves interaction approach. 1t has been introduced by Taylor (1931)

and allows to interpret instabilities in steps-shaped vorticity and density profiles in parallel
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flows - see Cairns (1979), Sutherland (2010), Carpenter et al. (2011) and Guha and Lawrence
(2014). Such flows allow the growth of three instabilities according to the waves to interact:
i) vorticity-vorticity waves; i) a vorticity wave and an internal gravity wave; #ii) two
internal gravity waves - see Caulfield (1994), Baines and Mitsudera (1994) and Carpenter

et al. (2010a) for a detailed review of these instabilities.

The first case is the classical Kelvin-Helmholtz Instability (KHI) from the works of
Helmholtz (1868) and Kelvin (1871) and it is the most studied and observed variety of
stratified shear instability. Its nonlinear evolution develops a pattern of overturning bil-
lows: e.g. in Thorpe (1968) a train of billows has been realized in laboratory experiments
and by numerical simulations in Scinocca and Ford (2000) as well, whilst in field measure-
ments it has been reported in Smyth and Moum (2012). The second most studied instability
(i) arises when a wave on a vorticity interface resonantly interacts with an internal gravity
wave lying on a density interface - see Holmboe (1962) and Alexakis (2005) - and is usu-
ally referred as the Holmboe Wave Instability (HWI). It has been observed in numerical
simulations Carpenter et al. (2010b) and Balmforth et al. (2012), and have been repro-
duced in laboratory experiments, Thorpe (1971) and Tedford et al. (2009). This instability
nonlinearly settles to a finite amplitude state of propagating vortices scouring the density
interface which develops cusp-like waves - see Smyth et al. (1988) and Thorpe (1968) for
numerical and experimental observations of the finite amplitude state. KHI and HWI are
considered robust instabilities in the sense that they have been observed in natural systems,
experiments and numerical simulations to persist for long timescales for a broad range of
different initial conditions and the “zoo” of secondary instabilities they suffer - see Caulfield
and Peltier (2000), Mashayek and Peltier (2012a,b), Balmforth et al. (2012) and Arratia
et al. (2013).

Taylor (1931) also pointed out the possibility of a third instability to develop in a
stratified shear flow. Waves riding density interfaces can resonantly interact when their
phase speed become locked thanks to the Doppler-shifting effect of a background shear
flow. This instability has been more elusive to observe, with the scientific community more
concerned with why one might find basic states with layered density profiles in the first place.
Taylor’s instability was quantified and studied in more detail by Caulfield (1994), in parallel
with some first laboratory experiments Caulfield et al. (1995) and nonlinear simulations Lee

and Caulfield (2001). Balmforth et al. (2012) provided a comprehensive study of T'CI in the
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long-wave limit that two density interfaces were considered as a stratified “defect” in the
shear flow. These works, together with last remarks on laboratory experiments in Taylor
(1931), showed the elusive nature of this instability. In spite of its theoretical feasibility,
TCI is difficult to be observed in laboratory experiments as well as in natural phenomena.
In Caulfield et al. (1995) it has been shown that in laboratory frameworks the middle
layer shrinks progressively, while the vorticity filaments embedding the billows of the finite
amplitude solution promote the onset of secondary instabilities (see Lee and Caulfield (2001)
and Balmforth et al. (2012)) - these phenomenologies make the finite amplitude state short

living and difficult to be observed.

Here we explore the linear stability and nonlinear evolution of multiple TCI growing on
a multilayered density profile. We consider a density staircase with a number M of equally
spaced steps of equal size with a background linear shear flow extending to infinite. This
fluid geometry is free of vorticity gradients, thus no KHI and HWT are supported, providing
a framework where we can focus on TCI. We study the stability of horizontal normal mode
solutions of the incompressible 2D Navier-Stokes and energy conservation equations under
the Boussinesq approximation. In the inviscid and non-diffusive limit, our results show
a predominance of near-neighbor interfaces TCI which are particularly strong when the
bulk Richardson numbers and wavenumbers are small. This result suggests to set up an
asymptotic expansion which allows to reduce the equation to a simplified model. Assuming
any strong gradient to be embedded inside a thin layer (a defect) of vertical dimension much
smaller than the horizontal domain, Gill (1965) exploited a matched asymptotic expansion
to describe the dynamics inside a vorticity defect - see also Balmforth et al. (1997) and
Balmforth (1998) which studied unstratified shear flows. In Balmforth et al. (2012) this
approach have been extended to the stratified counterpart and we take advantage of their
expansion to study our multilayered fluid. The expansion reduces the governing equations
to a Vlasov-like problem giving a simplified model where to study the nonlinear evolution

of large-scale internal gravity waves.

We also tackle two side aspects of the stability analysis of multilayered fluids: ) the effect
of viscosity and i) the effect of thickening the interfaces. Firstly we account for viscosity
effects on the linear stability of these horizontal waves. It is not clear whether or not the
wave interaction approach (Carpenter et al. (2011)) may give physical insight in the stability

properties of viscous modes. Therefore, following the approach of Balmforth et al. (1997)
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and Balmforth (1998) adopted for unstratified viscous shear flows, we solve numerically
the linear stability problem of the stratified counterpart showing an enriched spectrum of
unstable waves. Secondly we deepen the linear stability analysis in the full framework of the
Boussinesq equations considering interfaces of finite thickness. Alexakis (2005) showed that
smoothing out vorticity and density interfaces preserves KHI and HWI while introducing
new instability domains. Unstable modes belonging to the newly formed instability bands
appear for larger Richardson numbers and show finer structures due to higher harmonics of
the spectrum. Here we consider a three layers fluid where the two interfaces are piecewise-
linear profiles and observe analogous results for the TCI and compare them to the classical

results of sharp interfaces.

This chapter is structured as follows. In §3.2 we formalize the fluid geometry, variables
rescales, non-dimensionalizations and the defect theory approximations where we expand
the equations in terms of the parameter € to promote the leading order terms inside the
density defect. In §3.4 we study the linear stability of the multilayered shear flow. This
analysis reduces to the study of the Taylor-Goldstein eigenvalue problem, that is inviscid
and non-diffusive modes are accounted. In the first instance we briefly review the Taylor-
Caulfield instability, then we generalize to the case of M > 2 sharp interfaces. Under
the defect approximations we refine the analysis near the stability boundary of the most
unstable waves. In this limit we also consider two more phenomenologies: ) the effect of
smoothing the interfaces and i7) the effect of viscosity in the stability problem. The detailed
linear analysis we performed in the defect limit inspired numerical computations for which,
in §3.6, we show the results of computing the defect equations when the fluid presents four
interfaces of finite thickness and small viscosity. In the Appendix we report few satellite
results of the linear stability analysis. In studying the linear stability of a multilayered flow
we assume equally spaced sharp interfaces. We thus test the robustness of these results by
assuming randomly displaced interfaces and compare the results of 100 realizations to the
evenly spaced case in §A.1.1. Moreover we investigate the effect of thickening the interfaces
in the full set of equations. To attack the problem, as we show in §A.1.2, we consider a

three layers fluid where the interfaces are piecewise-linear.



3.2. FORMULATION 95

Y o
A S
............................. M-L| |_'
I
I
3 1
.................................. L
> 4
U o P
B} S__
Ve
Ve
Ve
7
e S I

Figure 3.1: Here we show the basic density profile for a M interfaces fluid where the density
decreases of Ap with hight at any step. The thickness of the middle layers is H = 2 while the
bounding layers extend to infinity. In the bottom panel we show the three interfaces profile that we
use throughout the chapter: the thick line is a piecewise-constant interface; the dashed line represent

a piecewise-linear interface; and the thin curve is the hyperbolic tangent interface.

3.2 Formulation

We consider a two-dimensional viscous and conductive incompressible vertical fluid un-
der the effect of gravity g. Governing equations are given in (1.5)-(1.7) in the vorticity-

streamfunction formulation and by introducing the buoyancy field b* = gp/p, we get

Ct** + Z/);* C;* - l/f;* C;* = b;* + V* (C;*J?* + C;*y*)v (31)
bzk* + w;* b;}k - '(/}Z* b;* = /ﬁ',* (b;*m* + bZ*y*), (3.3)

where (* is the vorticity, ¥* the streamfunction and b* the buoyancy fields. Here * de-

notes physical quantities. In terms of the velocity field (u*,v*), the vorticity is defined by

*

(" = v}. —u,. and the streamfunction is defined as (u*,v*) = (., 9;.). The physical pa-

rameters are v*, k* the kinematic viscosity and the diffusivity respectively. The domain is an
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infinitely deep channel of finite horizontal length scale L, i.e. (z*,y*) € [0, 27 L] X [—00, +00].
We assume the tree scalar fields to decay exponentially at y* — +o00 and to be periodic in
x* = 0 and 27 L. The basic velocity profile we consider here is a linear shear (U, V) = (sy*,0)
where s is the shear rate. The basic density profile p is given by a group of stacked layers of
constant density which increases of Ap at each layer with depth. The layers have thickness
2L except for the bounding layers which extend to infinity. We indicate with M the number
of interfaces separating the layers, assume M to be even and the middle layer to be centered
at y* = 0. In figure 3.1 the basic density profile is shown together with a magnification of
a single interface to show the three different kinds of interfaces we will consider throughout
this work. Most of the attention is on the piecewise-constant density interfaces, but we
consider also a piecewise-linear interface and a hyperbolic tangent interface.

To make the equations dimensionless we take L as characteristic lengthscale, U = sL for
the velocity, L/U as timescale and U2 /L for the buoyancy. We also explicit the variations

from the basic state defining

* 1 2 * U U x U2 U2
WY ——§ULy + UL, ¢ —f—FzC, b —TG(yH—Tb (3.4)

thus the nondimensionalized equations for the perturbations are

Ct + f(/)xgy - %Cx + ny = b:v + V(C:c:t + ny)7 (35)
by + Yaby — yby + yby + Gytby = K(bea + byy), (3.6)
C = Pz + wyya (3-7)

where the nondimensional parameters are the inverse Reynolds and Péclet numbers v =
v*/UL and k = k*/UL.
We consider the following interfaces profiles, as vertical derivative of the density field.

The piecewise-constant profile

O(y) = d(y), (3.8)

the piecewise-linear profile

1 —sgn(ly|/d — 1)), (3.9)

Oly) = 45
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and the hyperbolic tangent profile
1 2

Where d tunes the thickness of the last two profiles. Given a particular profile ©(y) for

every interface the vertical derivative of the density field is

M/2—1
Gy=7 Y (@(y—Zj—1)+@(y+2j+1))7 (3.11)

j=0
where J is the bulk Richardson number that measures the strength of the density jump

between the layers.

3.3 Defect theory approximation

In this section we introduce a simplified instance of equations (3.5)-(3.7). We consider a
staircase of vertical dimension much smaller than the horizontal scale L and define ¢ <« 1
their ratio. In this limit the staircase can be seen as an interface - the defect - in the density
field where the strong gradients, the steps of the staircase, are flattened inside. Introducing
appropriate rescales in ¢ allows to tune the magnitude of each term of the equations and
build a matched asymptotic expansion. This method have been tailored to ease differential
equations where a small parameter multiplies the highest derivatives. For this reason these
terms are generally negligible except where the gradients are strong enough to balance the
small parameter. Such expansions have been widely used to study boundary layers but in
this work it describes a defect layer embedded inside an infinitely deep channel. Outside
the defect the vertical variable y is of order one and we expect the main contribution to
come from the advection of vorticity and buoyancy by the background shear. Inside the
defect we resolve the domain defining the rescaled variable n = y/e which is of order one
inside the defect where more terms interplay with the background shear.

To couch the expansion we rescale the perturbation fields v, ¢ and b in terms of €2, for
that the background shear is not affected by the perturbations and we rescale the time as
t/e. In this way we obtain the following set of equations that focus on weakly nonlinear

and long timescales effects

ECt + 527/}1'Cy - €2¢y<m + ygz = by + 537/((11 + ny), (312)
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eby + e2hby — £2YPyby + yby + 202Gy = 3K (bya + byy ), (3.13)

¢ =tz + wyyv (3.14)

where the rescaled inverse Reynolds and Péclet numbers are

~ o~

R
and k=

m- (3.15)

T SBUL

Outside the defect y = O(1) and the leading order terms of (3.12) and (3.13) are
Y(Vupw + Vyy) ~ by and yb, ~ 0, (3.16)

where higher order terms in € have been discarded. Since the vertical variable is of order one,
to satisfy yb, ~ 0, we take b, ~ O(e). Thus we solve the Laplace equation y(1)yy +tyy) ~ 0

of the streamfunction using Fourier series, for that the solution is

o0

Y=Y ()™ M 4 aj(y, 1), (3.17)

n=—oo

and ¥ (y,t) = OQW U(x,y,t)dx/2m is the horizontal average of the streamfunction. In the

solution appears ®(x,t) which is the leading order streamfunction

o0

O(x,t) = Y Bu(t)e™. (3.18)

n=-—o0o
At the defect boundaries the derivative difference is
=0+ y=0"
w’uz =0— =-2 Z |n|(I) an [ i|y:0— i (319)
n=—oo
and this will be matched with the boundaries conditions on the inner equation.

Inside the defect we consider the rescaled vertical variable n = y/ = O(1) and the fields

T/J=¢0($at)+€¢1(f€»"7»t)7 C x y 1,1t /57 bZB(.’L’,T],t), (320)
which promote weakly nonlinear terms to the leading order and demote fully nonlinear
terms to higher orders. From (3.14) we have Z = e@ozz + €°P1az + G1n ~ D1y, Whose
derivative difference over the rescaled domain is

+o00
[ouli= "% =/ Z dn. (3.21)

—0o0
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Equating the inner and outer jumps across the defect we get

+oo 00 )

/ Zdn— < Z>=-2 Y |n|®y(t)e™” := L3, (3.22)
—o0 n=—0o

where < --- > is the average over the domain of the inner equation. Injecting the rescaled

variables and fields in equations (3.12) and (3.13) we get finally the defect theory equations

Zi+0Zy + ®pZy — vy = Ba, (3.23)

Bi +nB; + ®, B, + ®,G,, — KB,,, = 0, (3.24)

where to guarantee the matching with the outer solution, we get from (3.16) that Z, and
B, vanish as n — £oo. Assuming Pr = v/k = 1 we may further simplify the equations

introducing 2 = Z + B,) which gives

2+ 02y + 0,2+ 2,.Gyy — vy, =0, (3.25)
+o0 i )
Lo = Zdn— < Z >= -2 Z [n| Py, (L), (3.26)
—o0 n=-—00

3.3.1 Numerical algorithm

Equations (3.25) and (3.26) are solved on the truncated domain (z,y) € [0, 27] X [~Ymaz> Ymaz)»
where Ymqz is sufficiently far from the interfaces - this is to prevent any interference with
the dynamics. We solve an initial value problem by perturbing the equilibrium solution
Z(n) = Gy(n). The perturbations, of small amplitude Ag, are introduced in §3.3.2 and
are: i) a transient forcing of particular modes of the leading order streamfunction ®(z,t)
as in (3.29) or i) the leading order solution (3.30) and (3.31) of the weakly non linear
expansion presented in §A.2. The defect equations are then time stepped by using the
operator-splitting algorithm of Cheng and Knorr (1976) - tailored for this specific problem
in Balmforth et al. (2012) - which provides O(At?) accuracy.

The scheme splits the equation into two advection equations and explicitly adds the
diffusion of 2. The first is a horizontal advection equation where 2 (z,n) is advected by
the background shear and the second is a vertical advection equation where to advect is the

leading order streamfunction over the defect ®(x). These equations are

HAnZ =0, Zi+0,%, =0, (3.27)
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and are solved at different stages. The field Z™(x,n) at the beginning of the integration
step At is time stepped by advecting 2 for the first half step (At/2). The explicit solution
is the horizontal shift Z(z,n) = Z"(x — nAt/2,n) and is performed by a Fourier series
interpolation on each horizontal grid level. Then ®(x) is computed from an approximation of
(3.26) and plugged into the vertical advection equation. The explicit solution is Z..(z,n) =
Zi(x,n — ®,At) and the vertical shift is entrusted to a spline interpolation of Z(z,n)
at any vertical grid line. At this stage the diffusion term is accounted explicitly by a
central-difference differentiation in 7 and the last horizontal shift of A /2 is computed giving
"+ (2, m) with O(A#?) accuracy.

In our simulations we choose ¥4, to be placed at M +2 which guarantees the boundaries
to have small influences on the flow dynamics. The domain is discretized using a grid
subdivision X for the horizontal direction and 2Y + 1 for the vertical direction which are
choosen according to the purpose of the simulation. Time step At in our simulations is such
that |[vmaz| At < An, where vy, i the maximum vertical velocity and An the vertical grid

step. The condition means that the vertical advection is smaller than the grid interval and
An

Umaa’

we take as time step min ( 0.005). As a measure of the growth of the instabilities we

compute the L?-norm

[SIE

N/2

aty=| SO |@a)P (3.28)

n=—N/2+1

of the leading order streamfunction (3.19).

3.3.2 Initial conditions

In our numerical simulations we run a series of initial values problems perturbing the basic
state with three different initial conditions. We can kick a particular Fourier mode for a

small amount of time
i = Agdprte 07 with,k=1,2,. .., (3.29)

where Ag is usually 0.01. This initial condition cannot provide a specific phase velocity,
which we will show in §3.4 that is a crucial mark for unstable waves. Thus, to probe the
instability of these waves we need initial conditions that can provide a specific wavenumber
and phase velocity at once. By using the leading order solution (A.18) from the weakly

nonlinear theory (see section §A.2) we obtain an initial condition that perturb k£ = 1. By
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providing ¢ = 0 + icy we get

Ay G
Iy =— 1 (y cos & — cosin ), (3.30)
Y2+ c%
and when ¢ = 2 + icy
Ay G
ILh=———"JT" 2 ((y —2)cos x — casin x) (3.31)
(y =2 +c

We use i mainly when we don’t need to distinguish between different phase velocities,
and Iy or Io when this refinement is required. It is straightforward to extend these initial
conditions to higher wavenumbers or different phase velocities, but the two shown here are

the ones we use throughout this work.

3.4 Linear stability analysis

As shown in previous works (Sutherland (2010) and Carpenter et al. (2011)), TCI can be
interpreted as a resonance between gravity waves supported by different density interfaces
that arises when the Doppler-shifting effect of the background flow allows their horizon-
tal phase speeds to lock together. This resonance requires a suitable choice for the bulk
Richardson number which controls the natural phase speed of the waves in the absence of
flow. For M interfaces, there are (Jg ) possible resonances that may lead to TCI when J is

properly tuned.

3.4.1 Inviscid and non-diffusive fluids

We consider the inviscid and non-diffusive instance of (3.5) and (3.6), thus v = k = 0. The
equilibrium solution of these equations is function of the vertical direction and is given by
(3.11). Our goal is to analyze the stability of the equilibrium profile to linear perturbations

of normal mode form

o~

[0, ¢ b (@, y,t) = [, C, B (y) @D, (3.32)

where k is the horizontal wavenumber and ¢ = ¢, +ic; is the complex phase velocity: positive
¢; gives an exponentially growing mode whilst a negative ¢; gives an exponentially decaying
one. Because the horizontal domain is periodic, the wavenumber assumes integer values.

Injecting (3.32) into (3.5) and (3.6) and discarding the nonlinear terms the system reduces
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to the Taylor-Goldstein’s equation

d? ~ G, ~
(d_yz — k2) ) =— 5 _yc)zz/;. (3.33)

The main purpose of this work is to study resonances between internal waves in a highly
layered fluid (M > 2). For this reason we ease the linear analysis considering the broken
line profile (3.8). To investigate the possible effects on waves instability due to interfaces
thickness d, we study the case M = 2 (see A.1.2) assuming the piecewise-linear profile
(3.9). By the matched asymptotic expansion we simplify the governing equations to (3.22)-
(3.24) and in §3.4.1 we obtain an explicit dispersion relation that predicts the stability of
wave perturbations in the defect theory limit. We use this integral equation to predict the
formation of instabilities in our numerical simulations where we consider M = 4 smooth
interfaces (3.10).

We can turn the Taylor-Goldstein equation into an integral equation by using the Green’s
function of the left-hand side of (3.33). We may rewrite the Taylor-Goldstein equation as
Lib(y) = G for that the associated homogeneous problem £ = §(y — &) has solution

9(y,§) = —%e"“'y‘f'. (3.34)

The general solution is then given by Green’s function

. +oo +oo "
by = G(€)o(y ) = o / N %e-k'y*'d@ (3.35)

where the integrand depends on the equilibrium buoyancy profile and the vertical stream-
function itself. Assuming the interfaces being sharp (3.8) we can turn the equation to a
matrix eigenvalue problem in ¢ where the eigenvector is the set of M values of 12 (y) on each
interface. We define K = 2k/J, | =2j+1, ¢ =e 2k ¥, = @(y)/(y —¢)? and in order to
find the unknowns ¥; we compute (3.35) on every interface I’ obtaining the following set of

M linear equations in ¥;

M-1
1V —y [V
Kl -y = <\I/le T lz”') , (3.36)
I=1,0odd

!=—M+1, odd, M — 1.

If we denote the matrix of coefficients of the W;’s by %/, the dispersion relation is given by

Dyy(e, J, k) = det(¥pr) = 0, which is a polynomial of order 2M in c.
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Defect theory

Under the approximations of the defect theory we may reduce the linear stability problem
to a simplified and explicit dispersion relation. We consider the wave perturbations of the
basic states

7 — Z(T])eik(x_d), B = b(n)eik(az—ct)’ P = aeik(az—ct) (337)

and injecting them in the linear instance of (3.23) and (3.24), we obtain

aGy B aGy,

72=——"_ b= ) 3.38
(n—c)? n—c (3:38)
By substituting them into (3.22) we get the dispersion relation
+o0 G
2k — / —1 _dn =0, 3.39
—00 (77 - C)2 ( )

for that, provided a particular staircase G, (n), it is possible to solve algebraically (as in the
case of sharp interfaces) or numerically (as in the case of smooth interfaces) the dispersion

relation.

3.4.2 Taylor-Caulfield instability: a review
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Figure 3.2: Dispersion relation w(k, J) for M = 2 sharp density interfaces. The grey region shows
levels of growth rate w. The solid lines are the marginal stability curves for TCI and the dashed line
shows the position of maximum growth. In the inset it is shown the growth rate w along the dashed

line.

When M = 2 the linear system of equations (3.36) reduces to

K(1—-¢)?-1 —€ vy 0
= (3.40)
—€ K(l+¢)?-1 Uy 0
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and its characteristic polynomial provides the dispersion relation we seek

Dy(c, Jk) = ¢* — Ty 02+J—2(1—62)— A (3.41)
T k 4k2 k ’ ’
For ¢, = 0 we find the marginal stability curves

%
C1Fe€

J+ (3.42)

that are showed in figure 3.2 as solid lines. For k£ > 1, we find that the asymptotic behavior
of the boundaries is J ~ 2k. The implicit function theorem let us to find the set of points

(J, k) in which ¢; is maximum
Jc D]
- D 0, (3.43)
that is
5y J

C :ﬁ(

1—¢*) — 1. (3.44)

Substituting this into (3.41) we find the set of points in which ¢; is maximum

V1I—e2—(1-¢€%)

=1
T =k €2(1 — €2) ’

(3.45)
showed as a dashed line in figure 3.2 while the inset shows the growth rate along this line.

3.4.3 Multiple interfaces

From (3.36) we can write the linear equations system as ¢, X? = 0, where %) is the

coefficients matrix for M interfaces - e.g.

KB —-c¢?-1 —€ —e? —e3
- K(1—¢)?-1 - e
G, = ‘ -9 ‘ ‘ (3.46)
—e2 —€ K(l1+¢)? -1 —€
—e —€? —€ KB3+ec)? -1

is the matrix of a system with M = 4 interfaces. The vector of unknown values of the stream-
function at the interfaces position is X = [|Upr—1 Upr—g ... U1 W_q ... U_pr03 W _pria]-
In the limit of large wave numbers the off-diagonal elements of ¥, are negligible, which
means that the vorticity of internal gravity waves fades quickly away from any interface
and thus the waves weakly overlap. This reduces the matrix problem to a product of the

diagonal terms,
M/2—1

11 [¥<2j+1—c)2—1] —0, (3.47)

j=—M/2
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which implies phase velocities ¢, = 25 + 1 £ \/m We now look for waves with equal
phase speed after being doppler shifted in opposite directions: when J = 2k we find the first
phase-locking which occurs for nearest-neighbor interfaces; the associated phase speeds are
¢ =0, £2, 44, ..., =(M — 2). A larger J unlocks the next-nearest-neighbor resonances
when J = 8k giving ¢, = +1, 43, ..., 2(M — 3). Third-nearest-neighbor resonances are
activated when J = 18k, where waves drifting at ¢, = 0, £2, +4, ..., £(M — 4) become
unstable. The repeating structure of the resonances is now evidenced and indicates how to
relate the Richardson number to the “order” r of the interaction, defined such that r = 1
signifies nearest-neighbor interactions, next-nearest-neighbor interactions have r = 2, and

so on. Evidently, J = 2r2k, which provides the k > 1 asymptotes of the instability bands.

10° . . . . ;
E\\ A+A—7AiBi,Bici

107
Ci | atct BB ]
102 E ﬂ ﬂA*ci
107 B '

E ATB*E - 0 02 04 06 08 3

10-4 I 1 1 1 L 1 1 | | CHrlcil J.

0 2 4 6 8 10 12 14 16 18 20

Figure 3.3: Eigenvalues ¢ = ¢, +1i ¢; of the Taylor-Goldstein equation. Here M = 6 sharp interfaces
are perturbed with a fundamental mode of & = 0.01. Panel a) shows the real and b) the imaginary
part of ¢ as function of the Richardson number J. The markers A*, B+ and C* names the interfaces
at y = £1, £3 and 45 respectively. The resonance between two interfaces is given by a couple of

letters, thus A~ B™ is the interaction between waves in y = —1 and y = 3.

For lower wavenumber, the vertical decay of the internal gravity waves is slower and
the off-diagonal elements of 43 become important. In figure 3.3 we cut the plane (J, k) at

k = 0.01 and show the dependence of ¢ on J. We mark by AT the interfaces in y = +1,
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Figure 3.4: In panel a) we show ¢; = w;/k, where k = 0.01, of the most unstable phase velocity

¢ = 0 for increasing number of interfaces M and in panel b) we show max(c;) as function of M.

B* in y = 43 and C* the ones in y = +5 - we made this figure assuming the flow to
have six interfaces. As we observed in the limit £ > 1, the first waves to interact are the
adjacent ones, and then stronger stratifications allow resonances between interfaces more
and more distant. In panel a) we see that the unstable velocities are not strictly the mean
shear velocities of the resonating interfaces, but vary with J. In panel b) we show the
growth rates ¢; = w;/k for the 15 unstable resonances. The most unstable waves comes
from nearest-neighbor interfaces interactions. Among these the most effective instabilities
are related to core layers interactions - see inset of panel b) - and the strongest one is due
to the interaction A*A~, for which ¢, = 0. In figure 3.4a we show how the growth rate of
this instability is affected by the total number of interfaces. As M increases the instability
band become small, but the fastest growing mode reach a saturation in its possible growth

- as it is shown in panel b).

A clearer idea upon the dependence of the unstable bands on M and k comes from figure
3.5. Here we compare the case of M =2 to M = 4 and 6. As we see, and already pointed
out from the k >> 1 limit, these bands follow the asymptotes J = 2r?k. The more interfaces
in the fluid the more unstable bands we get: 6 for M = 4, and 15 when M = 6. In the
latter case, we show in the right panel of figure 3.5 the maximum growth rate inside each of

these 15 bands. Every different symbol, marks a different r, going from the most unstable
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Figure 3.5: Dispersion relation wys(k,.J) for M =2, 4 and 6 sharp interfaces. The solid lines are
the marginal stability boundaries for Taylor-Caulfield instabilities and the gray shaded regions are
where the unstable modes lies. The right panel shows the maximum growth rate of unstable waves
when M = 6. Growth rates are labelled as follow: (0J) is the resonance AT A~ A*B* and B*C*;
(O) is ATC* and ATB*; () is B¥ B~ and ATC*; (x) is BYCF; () is CTO~.

(r = 1) waves to the slowest (r = 5). We would like remark that equal phase velocities
arising from different interfaces are related to different unstable bands, e.g. interfaces at
y = +1 or y = £3 have the same resonant velocity (¢, = 0), but having different r place

them on different portions of the (J, k) plane.

Long-wavelength approximation

We consider the limits k, J << 1 with J = O(k), for which the Taylor-Goldstein equation

becomes
G
W=y, 3.48
(y—c)? (3.48)
where G, = kG1(y). From the dispersion relation (3.39) and assuming a number M of
sharp interfaces G, = sz]‘i/oz_l[d(y —2j—1)+(y +2j + 1)] we obtain
M/2-1 5
k I“+c
7= > R (3.49)
j=0

where [ = 25 4+ 1. In figure 3.6a we can see the graph of the right hand side of (3.49), as

function of ¢?, in the case of four density interface. There are three different regions of k/.J:
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one over the intercept k/J = 10/9, one below the local minimum near ¢, = 2 and the region

between these two points. Above the intercept, k/J has four distinct real roots, thus ¢ has

k/J

Figure 3.6: Representation of the dispersion relation (3.49). In panel a) we show the case of M =4
and M = 16 is in panel b). Solid lines shows k/J(c?), the red solid dot shows the first mode to
become unstable, and blue solid square the last. The thin solid line connects these two points and

go through the local minima in ¢ = (25)%, j =0,1,2,..., M — 2.

four positive and four negative roots. Increasing the Richardson number - thus lowering k/.J
- the innermost root get closer to zero and when it crosses this value, two phase velocities
become imaginary. Those roots represent two standing waves that exponentially grow and
decay. The other real roots are drifting waves that neither grow nor decay. Moving to larger
J the next modes to lose their stability are the four nearby ¢? = 4 - they lose their marginal
stability. Two of them are unstable while two are stable.

What happens if we increase the number of interfaces? First of all we analyze how the

intercept point varies according to M. Equation 3.49 for ¢, = 0 becomes

M/2—1

= > 112 (3.50)

j=0
For M = 2 we have J = k that is the limit £ < 1 in equation (3.42). When M = 4 the

<

value for which the first modes destabilize lowers to J = 9k/10. We can calculate by hand

the intercept for each M, but we show that the critical value for which J destabilize the
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waves reach a lower bound for M — oo, see figure 3.7. We use the Dilogarithm function to

evaluate the sum. We begin from the Taylor expansions

2 3

—log(l—x)=x+%+%+0(m‘4),

2 23

—log(1+m):—m+?—§+0(m4)

and dividing both expansion by z, subtracting the second from the first and integrating

this equation, we get

T ] 1— 2 o) 1 / S
_/ de/+/ de’ZQZx_ (3.51)
0 0

.'E/

where [ = 2j + 1. On the left hand side there are the Dilogarithm functions, Lis(z) and
—Lio(—x) respectively. If we evaluate these functions in z = 1 we find that Lis(1) = 72/6

and —Lig(—1) = 72/12. Combining these results with (3.51) we find
o0
1 72
=y o= (3.52)
7=0

or J = 8k/m?, thus as M increases no waves could become unstable as soon as the Richard-

<l

son number is below this value.

Now let’s see what happens for the others minima. There is one of them between every

2

min

interval [(25 + 1)2, (27 + 3)?]. We suppose that the position of the minimum ¢?,, is mainly
given by the terms 2j — 1 and 2j + 1 in the series. Taking the derivative in ¢? of these two
terms end equating to zero, we still find a full 4th order polynomial. For the moment we

assume that the number of interfaces is large, then if j > 1 we find the polynomial
(1252 + A (452 - )3 =0 (3.53)

with real roots in ¢ = 452, which means that the minima are the mean velocities between
two adjacent interfaces as we saw in (3.36) taking the limit & > 1. This result is valid for
large 7, but from figure 3.6 it seems to be good for small j also, the error is less than 1%.
In figure 3.7 we can see, for increasing number of interfaces, the slope of the marginal
stability line departing from k = 0 of first and last unstable mode. We already know that
the limit value for ¢, = 0 is 8/72. For the last unstable mode we evaluated numerically the
value in ¢, = M — 2 finding that J/k = 0.8954. This means that also for M — oo the last

marginal stability curve has a finite slope.
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To summarize the informations given by the defect theory about discontinuous inter-
faces, we could say that whatever M is, the Richardson number should be bigger that 8 /72
to allow ¢, = 0, the most unstable mode, to become unstable. On the other hand, the
last unstable mode has a threshold to become unstable that is found numerically and is

J/k = 0.8954.

Figure 3.7: Position, in terms of J/k, for the most and least unstable mode as a function of M.
Circles represent the intercept value of J/k for ¢ = 0 and triangles are the local minimum values

for ¢ = (M — 2)%. The dashed line shows the asymptote for M — oo, see (3.52).

Smooth interfaces

Here we analyze the dispersion relation (3.39) when the staircase is characterized by the
series of smooth interfaces (3.10). The thickness d regulates the onset of instabilities and
their growth rate as we can see in figure 3.8. We report the growth rate of unstable
perturbation together with the marginal stable Richardson number .J(c,d). The case of
M = 2 interfaces which supports the formation of TCI have been widely studied under the
defect approximation in Balmforth et al. (2012) and here we focus on the dependence of
the critical Richardson number on ¢; and d. From figure 3.8a we observe the growth rate
to be smaller for increasing d, while J(0,d) is a non-monotonous function of d. Indeed it
decreases until d < 0.38 and then grows again becoming bigger than J(0,0) eventually (sce
3.8¢c, red line). If we consider two more interfaces in n = £3 more instabilities may arise.
In this case the possible unstable waves are ¢, = 0 and ¢, = +2. As we can see in figure

3.8b they don’t really affect the linear growth and the dependence on d, except from the
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Figure 3.8: Dispersion relation for a staircase density profile of smooth (3.10) interfaces placed in
n==1,+3, ..., M — 1. In panel a) and b) we show the growth rate ¢; = w/k as a function of J/k
for different values of the interfaces thickness d, where M = 2 is in a) and M = 4 in b). The solid
lines refers to modes with phase velocity ¢, = 0 and the dashed lines to ¢, = +2. The two thick
lines refer to the broken-line profile while (d) marks the critical values J(0,d) and (o) marks J(2, d).
In panel ¢) we show these two functions for M = 4, black lines, and M = 2 (red line). The square

is the asymptote J/k = 8/72, see (3.52).

fact that they become unstable at a smaller J(c,d). Moreover we notice that we have a
growth rate and a marginal stable Richardson number for each phase with ¢, = 0 being
more unstable than the outer phase velocities. We remark the fact that when ¢, = £2 the

results of the linear analysis overlap because of symmetry properties of the problem.

3.4.4 The viscous and diffusive problem

Viscosity can alter the instability of normal mode perturbations of the basic state and here
we address this problem by considering v, k > 0. We consider the perturbations in (3.37),

ie. [Z,B,®] = [2(n),b(n),a]exp ik(x — ct), and inject them into (3.22), (3.23) and (3.24)
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and by keeping the linear, viscous and diffusive terms we get

Vg, — ik(n — ¢)z = —ikb, (3.54)
. .
Kby — ik(n —¢)b = _iGy z(n)dn, (3.55)
2 —00
where
AL Sy (3.56)

Fourier transforming these equations allows to reduce this second order ODE problem to

the first order ODE system

dz Prvo N\ ~
d_q - (T — ’lC) Z = —Zb, (357)
db R S DU~

The equation in b(g) do not depend on Z(¢) and has solution

T _ a3

~ K +oo ~ Pr .~
ba) =~ 72005 e [ dg g6 e, (359)
q

whilst (3.57) depends on b and has solution

. T B (T _Peem [T Br o
Z(q) = —z;z(O)e:%k_“q/ dg e 3k /~ dq gG(g) e ar Tl (3.60)
q q

where we injected solution (3.59) into it. The dispersion relation is found by fixing ¢ = 0

in the last equation, that is

T +o00 _ B—r) +00 R Br .
0=D,x(c,k,J) =1+ ZE/ dq e 3k / dq GG(q) e 3k T, (3.61)
0 q

which gives us informations on the dependence of the eigenvalue ¢ upon k and J for some
fixed v and k. Throughout this work we focus on the case v = k, for that the dispersion

relations reduces to
T [T~ Py =
0=D,(c,k,J)=1+ E/ dq §Gp(q) e & T4 (3.62)
0

which we solve numerically using a Newton roots finder algorithm. We fix k£ and J and

expand with a Taylor series 0 = D(c) = D(cg) + D'(cg)dc from an initial phase velocity
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Figure 3.9: Linear stability of viscous modes in a three layers fluid. We consider two configurations
where the interfaces have thickness d = 0 and fluid viscosity v = 0(red lines) v = 0.005(black lines).
In the top panel we show the phase velocity ¢, and in the bottom panel the imaginary part. The
different stiles of the black lines serve only to mark together the lines in the two panels: e.g. the
dashed line in the top panel is a phase velocity with the imaginary component given by the dashed

line in the lower panel.

NEW

¢g. From the expansion we refine the guess by cy

= ¢4 + 0c and than by iterating this

algorithm until |dc| is bigger than some error gives us the eigenvalue c.

To avoid complications due to waves interactions among a multilayer system, we consider
a piecewise-constant three layers stratified fluid. From our computations we observe that
when v < 0.001, viscosity has a negligible impact on the eigenvalues, which are given by
the red lines in figure 3.9. In this case what happen is that when J/k is small, four waves
propagates at ¢, ~ £1. These waves are marginally stable and for increasing J/k propagate
at velocities diverging from +1. When we increase k two waves move at |c.| > 1, while the
other two are slower (|c,| < 1) until, for a big enough J/k, both reach the common velocity
¢, = 0. At this point, while the fast moving waves are stil marginally stable, the resonating

waves become one stable and one unstable. This is the scenario we already explained in
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§3.4.2.

Having a viscous fluid add some significative variations to the eigenvalues structure:
more phase velocities are available, more unstable waves appear. Some of them become
unstable without resonating with other waves. When v = 0.005 we observe eight modes
which are symmetric in ¢,. The modes at |¢,| > 1 that are always marginally stable when
v = 0, become four (thin solid and bold dotted lines in figure 3.9). The dotted lines modes
can be unstable for small J/k, while the thin solid line modes become unstable for slightly
higher J/k (see inset in figure 3.9). As we may see from the figure, these four modes never
resonates with other modes. The two modes that in the inviscid case counter-propagate
until they resonate, are now stable for small J/k and become unstable for big enough values
of the parameter. When they phase lock, produce two unstable waves, one of which persists
for bigger J/k, whilst the other resonates with the wave shown as dashed line in figure 3.9.
This are two viscosity induced modes which are always stable. One of the two eventually
decays at a rate so small that resonate with another mode (bold solid line) producing two

stable modes.

3.5 Weakly nonlinear analysis

This section is devoted to the analytical study of the region nearby the onset of instabilities
in the density staircase when internal gravity waves are Doppler-shifted by a background
linear shear. The onset of instabilities is inside the domain of the defect approximation, thus
we take advantage of the approximations that led the governing equations to the simplified
system (3.25) and (3.26) and assume the fluid to be inviscid and non-diffusive. We focus
on slow timescales T' = et, which allows the time derivative of Z°(x,n,t) to be of the same
order of the vertical advection term @, 25, and redefine the equations in the moving frame
of reference T = x —ct. Expanding 2 (z,n,t), Gy(n), ®(z,t) and J to a pawer series in €, we
obtain a set of equations for each order in €. By solving them subsequently (see Appendix
A.2 for a detailed computation) we eventually obtain the amplitude equation

I 12421

_ 2
Arr = 13A+ A |A| A, (363)

being A(T) the amplitude of the leading order streamfunction inside the defect ®(z,t) =
A(T)eﬁ + c.c.. The quantities I3, I5 and I depend on the shape of the staircase. As

an example we consider the case of four sharp interfaces for which these coefficients are
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I3/J(c) = 164/27, Is/J(c) = 7300/729 and I = 20.J2/9. The quantities J(c) and .Jo are
respectively the bifurcation point relative to one of the unstable phase velocities ¢, = 0 or

+2 and the O(¢?) term in the expansion of J. The secular solution of (3.63) is

1
A= ——— 3.64
A=\ -pra (3.64)

which simultaneously provides a condition on Js: to keep the solution real, Jo must be
negative. This means that the bifurcation is subcritical as is shown with dashed lines in the

top panel of figure 3.13 and confirmed by numerical simulations of a nearly inviscid fluid.

3.6 Numerical analysis

10°

c)id)

0 10 20 30 40 50 60 70 80 90 100 t

Figure 3.10: Numerical solution of (3.25)-(3.26) for smooth interfaces placed in 7 = +1. Here
Pr=1,J=1,v=107% and ¢ = i0.167. In the top panel we report a(t) and compare it to the
linear growth of the unstable mode k£ = 1. The dashed lines mark the times at which the snapshots

below have been taken

In this section we present the numerical simulations of the multiple density layers fluid

with a linear background shear. Although most of our results relates to the linear analysis
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of the full equation system (3.5) and (3.6), we solve numerically the flow under the defect
approximation introduced in §3.3, therefore the layers are confined into a horizontal defect
such that it is possible to simplify the governing equations to the system (3.25) and (3.26).
This assumption prevents the fluid to develop long distance instabilities (r > 1), indeed
assuming k < 1 only nearest-neighbor waves are unstable as we found in 3.4.3. Assuming
these simplifications is a good starting point in our numerical studies since the linear stability

analysis shows that among all these possible instabilities these are the strongest.

We briefly show the development of a Taylor-Caulfield billow to show which are the main
phases of its nonlinear formation. For this purpose we consider the case of TCI (M = 2)
which have been studied numerically in Lee and Caulfield (2001) for the full equations
setup and in Balmforth et al. (2012) under the long wave approximation we consider here.
In the limit of inviscid and piecewise-constant layers the bifurcation from the basic state is
subcritical, while big enough d or v can shift the bifurcation point and make it supercritical.
As it has been shown in Balmforth et al. (2012), when the viscosity and interface thickness
are v = 107% and d = 0.2 the subcritical nature of the bifurcation is still preserved. In figure
3.10 we show a numerical simulation of such configuration, where the Richardson number
is big enough to make the mode k£ = 1 unstable. We choose J = 1 which is larger than the
critical value J(0,0.2) = 0.88, see figure 3.8¢c at the level d = 0.2. When J = 1 the relative
growth rate is w; = 0.167. We perturb the basic profile using i; with Ag = 0.01 - see (3.29)
- and if we compare the expected exponential growth to the temporal evolution of a(t) we
see in the top panel of figure 3.10 that the two lines match during initial phase of growth of
the TCIL. In this phase the interfaces twist and move towards each other (see figure 3.10a).
Than the nonlinear growth makes the two interfaces to merge in a localized region (see
figure 3.10b) producing an elliptical billow which is embedded by vorticity filaments - see
panel ¢) and d). The second-stage evolution of the billow is then regulated by viscosity
that can prevent the formation of secondary instabilities and eventually slowly decays the

nonlinear state.

Now we want to study the interplaying influence of a multi-layered fluid where M > 2.
For this purpose we add two interfaces in n = +3. We remind to the reader that the
defect approximation allows the interaction between nearest-neighbor interfaces only, as
have been discussed in §3.4.3. The available phase velocities are ¢, = 0 and +2, which are

due to interactions AT A~ and A*B*, whilst interactions A*BT and BYB~ (r > 1) are



3.6. NUMERICAL ANALYSIS 7

e)g)
|

1 1 |

100 120 140 160 180 200

Figure 3.11: We show the nonlinear evolution of a perturbed M = 4 interfaces fluid. Each interface
is smooth with d = 0.2. The cases of inviscid fluid is shown in panels a)-e). The Richardson number
is J = 1.2 which allow internal gravity waves with ¢, = —2, 0 and 2 to be unstable. In the top
panel we report a(t), the linear growth of ¢, = 0 (blue) and ¢, = £2 (red) and the dashed lines are
where the snapshots in the panels below have been taken. In panel f) and g) we show the effect of

v =3-107* on the long-time behaviour of the solution.

forbidden. As well as for the case M = 2, we show in figure 3.11 numerical simulations for
M = 4 interfaces of thickness d = 0.2 for an inviscid fluid. We perturb the basic state with
i1 where Ay = 0.01. This initial perturbation excites kK = 1 but do not provide any specific
phase velocity. Indeed we pick J = 1.2 where, from figure 3.8b, we know that both ¢, =0
and +2 are unstable with growth rates wg = 0.3353 and w9 = 0.3156. These are compared
to a(t) in the top panel of figure 3.11. The two growth rates are similar and because of the
oscillations of a(t) it is difficult to understand which one dominates. As we have seen for
M = 2, the interfaces twist toward each other (see figure 3.11b) and form three billows: a
stationary one in the middle layer and two in the outer layers that counter propagate at
¢, = 2 (see figure 3.11c). In the second stage evolution the vorticity filaments that embeds

the three billows suffer secondary instabilities (see figure 3.11d). Turbulent parasitic billows
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forms and have the effect of mixing evenly the defect layer leaving three sharp “holes” in the
mixing layer (see figure 3.11e). In contrast to the inviscid case, in figure 3.11f and 3.11g we
show two snapshots of the numerical solution when the fluid has viscosity v = 3-107%. The
early stage evolution is not affected by the viscosity, but eventually vorticity filaments are
diffused before they undergo secondary instabilities. Over long timescales diffusion affects
first the central billow, which is diffused in the mixing layer and then the whole nonlinear

state decays slowly to a single mixing layer of nearly constant density stratification.
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Figure 3.12: We show a(t) for the initial value problem (3.29) for M = 4 smooth interfaces of
thickness § = 0.2. The Richardson number is J = 0.8 and we consider the viscosities reported in

the legend. In the inset we see how v controls the saturation maximum a*.

We want to numerically unveil the region near the bifurcation points of a wave with £k = 1
and phase velocity ¢, = 0 and +2. In §3.4.3 we assumed the fluid to be inviscid and find
out - see figure 3.8 - that the critical Richardson numbers relative to the available unstable
phase velocities are J(0,0.2) = 0.8 and J(42,0.2) = 0.82. We also observed in §3.4.4 the
triggering effect of viscosity on the stability problem. In that section we considered sharp
interfaces and observed that viscosity has negligible effects on the stability of internal gravity
waves until v < 1073, After this threshold it abruptly changes the linear stability scenario
allowing wave-resonant instabilities as well as unstable resonant-free waves. For numerical
purposes we consider d = 0.2, therefore we must be careful on the choice of v in order to
guarantee the bifurcation to remain subcritical. For this reason we do a qualitative survey
on the effect of v on the critical Richardson numbers found in the inviscid fluid stability

analysis, see §3.4.3. These points have been found assuming the fluid to be inviscid and,
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as it has been pointed out in Balmforth et al. (2012), v can shift their position and make
them subcritical or supercritical. For this reason we fix the Richardson number close to
J(0,0.2) and vary v in the range 1079 < v < 107, In figure 3.12 we see that when v = 1076
the solution is subcritical, but a viscosity five times bigger makes it supercritical. Thus we
choose v = 1075 as a big enough viscosity that still preserves the subcritical nature of the

inviscid bifurcation, such that we can rely on the analysis we did in §3.4.3.

Linear stability analysis in 3.4 gave us many informations about the critical points of bi-
furcation. We studied how are affected by the number of interfaces and physical parameters
such as viscosity and interface thickness. To uncover the nature of such points we consider
a weakly nonlinear analysis, that we have illustrated in §3.5. This analysis allows to find
an evolution equation for the amplitude of the secondary instabilities growing nearby the
bifurcation point. As we observed in §3.5, the two bifurcation points are subcritical and
here we use Direct Numerical Simulations (DNS) to explicitly unveil it for the possible un-
stable modes in this flow configuration. We run our DNS as initial-value problems where
the initial condition is given by the equilibrium solution Z(n) = G, (n) perturbed by (3.30)
and (3.31) depending on the specific phase velocity we want to excite. Then we run the
simulations in the neighborhood of the bifurcation points and use a* - the first maximum
in the temporal evolution of a(t) - to track the solution’s bifurcations. Above the bifurca-
tion point, where the equilibrium state is linearly unstable, we expect the perturbations to
grow exponentially as predicted by the linear analysis. We know from the weakly nonlinear
theory and the choice of small viscosity that the bifurcation must be subcritical. Indeed
below the bifurcation point we observe two possible scenarios. Strong enough perturbations
allow the solution to nonlinearly saturate to an amplitude a*, independent on Ag, which is
the natural continuation in the bifurcation diagram of the linearly unstable states. Below
a specific threshold in Ag, the solution shows no coherent structures and suffer a number of
slowly decaying oscillations. Therefore we pick this threshold as mark of the unstable per-
turbations in the linearly stable region, and for solutions developing a persistent pattern we
pick the first saturation maximum. By collecting these values for a range of J and different
initial conditions (Ip and Is) we build the bifurcation diagram in figure 3.13a. The weakly
nonlinear theory, which relies on the assumption of inviscid fluid and sharp interfaces, pre-
dicts the formation of two subcritical bifurcations departing from J(0,0) and J(42,0).

In our numerical simulations we can clearly see the subcritical nature of the bifurcations
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points which is being preserved by the introduction of the external layers even though we
are considering thick interfaces in a viscous flow, whereas their branching is different. In
Balmforth et al. (2012) they show the bifurcation diagram for the TCI when v = 1075 and
d = 0.2 and we observe here that the introduction of two extra interfaces do not affect the
overall structure of the branching which is similar for the three unstable modes. This is not
surprising since only nearest-neighbor interactions are accounted by the model, thus no far

field interactions can play a role here to change the bifurcations structure.

We divide the bifurcation diagram in three regions: region I is where J < .J(0,0.2); for
region I1 J(0,0.2) < J < J(42,0.2); in region III J > J(£2,0.2). We show the solutions
in these regions, relative to the ¢, = 0 or %2 initial value problems, in panel a,b), c,d)
and e,f) respectively. The linear analysis says that in region I both phase velocities are
stable, in region III are both unstable and in region II only ¢, = 0 is unstable. On the other
hand weakly nonlinear analysis says that J(0,0.2) and .J(%£2,0.2) are subcritical bifurcation
points. In region III we observe the linear growth of modes with ¢, = 0 and ¢, = £2 to
nonlinearly saturate at a*. At this point a Taylor-Caulfield billow grows inside the layer
embedded by the two resonating interfaces 7 = ¢ and moves with a phase speed equal to
the background mean shear velocity. When we move to regions where the excited modes
are stable the state reached in a* has the same shape we described when J is bigger, but
the process leading the fluid to this state is affected by the magnitude (Ag) of the initial
perturbation. When Ay is small enough the flow go has decaying oscillation - lower branches
in 3.13a - and when Aj is strong enough the solution converges to the upper branch of the

same panel.

Secondary instabilities can be triggered in the flow by fully developed billows. Regardless
the mode being excited, eventually the remaining billows will grow. In figure 3.13e,f we can
clearly see this process when the modal perturbations are excited in region III. In panel
e) we show the case of ¢, = 0. The central billow forms during the linear growth and
when nonlinearities stabilize its growth we see small oscillations in his shape. When these
are strong enough the two adjacent billows form simultaneously. On the other hand when
¢ = 2 is excited, after its formation, the next mode being excited by its oscillations, is in
n = —2 and then n = 0, see panel f). From the time series in panel e) and f) we also see
that the time in which secondary instabilities set in is ten time bigger in the symmetric case

(¢, = 0), while when ¢, = 2 the asymmetry somehow can trigger these instabilities earlier.
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In region II we observe that the phenomenologies are the same but require longer times,
and the asymmetry of the state shown in d) speed up the growth of the other billows. In
region I we see something different: while the asymmetric initial condition ILo will lead to
the full billows configuration, the symmetric Iy is not strong enough to trigger growth in
near instabilities waves.

Linear stability analysis tells us that also higher wavenumbers may become unstable
if high enough Richardson numbers are provided. Here we want to understand which is
the nonlinear evolution of small scale TCI. Again, we consider a M = 4 fluid of smooth
interfaces of thickness d = 0.2. The stability analysis tells us that if we consider J = 3.6,
wavenumbers k£ = 1, 2, 3 and 4 are unstable. Therefore we run simulations where the
equilibrium state is perturbed by ig, with Ag = 0.01. In figure 3.14 we report numerical
simulations for £ =2, 3 and 4 respectively in panels a), b) and c) (the last goes together
with the three snapshots). The linear growth of the initial state reflects the wavenumber
kicked by i, as we can see in panel a), b) and ¢). In these panels we show the evolution
of the first four wave numbers where (black) is k = 1, (blue) is k = 2, (red) is k = 3
and (magenta) is k = 4. From these simulations we see that high wavenumber modes are
unstable to secondary instabilities that will promote longer wavelength structures. In panel
a) we see mode k = 2 to exponentially grow, saturates for a finite amount of time until
k = 1 kicks in and replaces k = 2. In panel b) we see mode k = 3 to exponetially grow,
but quickly merge to k& = 1 skipping £k = 2. Finally in panel c¢), and in the snapshots
below, we report numerical computation of & = 4. After this mode kicks in and saturates
(first snapshot) we observe the four billows per layer to merge to two billows per layer (see
second snapshot). This is also an unstable configuration and thereafter mode k& = 1 grows

and finally stabilizes the fluid.
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Figure 3.13: Bifurcation diagram of the saturation maxima a* agains the Richardson number J.
We consider M = 4 interfaces of thickness d = 0.2 with a viscosity v = 107% and Pr = 1. We focus
on pure modes (I or I) with £ = 1 and phase velocity ¢, = 0 or £2. The two dashed vertical lines
represent .J(0,0.2) and .J(42,0.2) and the two thick dashed curves are the amplitude equation’s
solutions predicted by weakly nonlinear theory. In panels a)-f) we report solutions for initial value
problems in region I-ITI. The left panels show the real (—) and imaginary (—) part of mode ®1 (%)

and the vertical dashed line is when the snapshot on the right panel have been taken.
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Figure 3.14: We compare billows merging for initial perturbations (3.29) of increasing wavenumber.
We consider M = 4 interfaces of thickness d = 0.2 in a fluid of viscosity v = 3-107* and J = 3.6
which allow wavenumbers k = 1, 2, 3 and 4 to be unstable. In panel a), b) and c) we show the time
evolution of |®,| where the black, blue, red and magenta lines are for n = 1, 2, 3 and 4 respectively.
In panel a) we perturb the equilibrium state using is, in panel b) is i3 and in panel c) i5. The three
snapshots of the solution show the merging of billows when mode k = 4 is initially induced in the

fluid. In panel c) we show by vertical dashed lines the time at which these snapshots are taken.
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Chapter 4

Conclusions

In this thesis the Candidate studied instabilities in stratified shear flows. The field is broad
and contributions have been multiple. In this work the density stratification is assumed to
be stabilizing, therefore lighter fluids lay above heavier ones. In few cases such stratifications
proved to be capable of destabilizing otherwise stable fluids, contradicting the common idea
of buoyancy forces having a restoring effects. Here we study two different systems and how

the density stratification affects the stability of their equilibrium solutions.

In the first case we consider the stratified counterpart of the Kolmogorov flow, a two-
dimensional parallel flow of sinusoidal form. This flow has been widely studied and shows
a rich number of states departing from the laminar solution as viscosity is lowered. Two
branches of solutions lead the flow to chaotic states, and here we compare this (almost)
known route to chaos to progressively stratified Kolmogorov flows. One branch is char-
acterized by horizontally drifting solutions, the other by horizontally steady (in mean)
solutions. The first shows a Pomeau-Manneville route to chaos - transition to chaos is due
to intermittency of bursting solutions. The second was left obscure in previous works: a
periodic orbit solution loses its stability toward a somehow chaotic state. In this thesis a
finer investigation have been done, and a new solution, precursor to the transition to chaos,
have been observed. The periodic orbit undergoes a supercritical period-tripling bifurca-
tion. Thereafter a Lyapunov exponents analysis proves that the subsequent bifurcation of

this newly observed state is toward chaos.

Given the set of all bifurcations in the unstratified case, increasing stratifications (and

therefore Richardson numbers) are accounted. Whilst the set of bifurcations is almost

85



86 CHAPTER 4. CONCLUSIONS

unchanged for Richardson number less than 1073, we observe some variations in the bi-
furcations from Ri = 1072 and higher. As we expect there is a general tendency for state
transitions to onset at higher Reynolds numbers, whereas a somehow unexpected enhance-
ment of the number of available states is also observed. When Ri = 1072 the period-tripling
bifurcation becomes subcritical and suffer three period-doubling bifurcations before it gets
to chaotic solutions. When the Richardson number is increased to 5-1072 we observe signif-
icant differences. A window of chaotic solutions, proved again by positivity of a Lyapunov
exponent, opens up at middle Reynolds numbers on the periodic orbit solution branch. Then
a completely different route to chaos departs from it: the periodic orbit has a supercriti-
cal period-doubling bifurcation, which later on becomes chaotic. At even higher Reynolds
number a roughly period-tripled state appear, which again undergoes a threefold period-
doubling bifurcation before becoming chaotic. Another striking change is on the drifting
solution’s branch. It shows a precursor periodic bursting solution where the state regularly
jumps among four available drifting solutions. It is therefore clear that a stabilizing density
gradient increases the critical Reynolds numbers needed to trigger state’s transitions, while

“unlocking” a number of new states inaccessible to the unstratified Kolmogorov flow.

The second part of the thesis is devoted to the analysis of instabilities due to waves
generated by density defects. The formation of multilayered fluids is common in natural
environments as oceans and lakes where layering can be a result of turbulent mixing or
double-diffusive convection. The density gradient between layers is usually high and sharp,
giving the possibility to interfacial waves to grow and propagate. In such systems there is
also a ubiquitous shear velocity, that is assumed to be linear here, and has the effect of
Doppler-shifting the interfacial waves. Among fundamental instability processes as Kelvin-
Helmholtz instability or Holmboe wave instability, Taylor (1931) theorized an instability
given by two interfacial waves which resonates thanks to the background shear. As Taylor
explained in his paper and Caulfield (1994); Caulfield et al. (1995) shows in his works, such
instability proved to be difficult to be observed in natural systems and laboratory exper-
iments as well, despite its theoretical explanation. One of the reason lie in the nonlinear
development of the instability. It produces elliptical billows between the resonating inter-
faces which are embedded by vorticity filaments. Being the fluid stratified, such vorticity
defects support the formation of secondary Kelvin-Helmholtz and Holmboe wave insta-

bilities which rapidly destroy the finite amplitude state produced by the Taylor-Caulfield
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Instability (TCI). In this work the main purpose is to investigate the susceptibility of a
number of constant density layers separated by equally spaced sharp interfaces to TCI and

their subsequent nonlinear evolution.

Assuming the fluid to be inviscid and interfaces to be sharp, the linear stability analysis
tell us that TCI due to resonance of nearest neighbor interfaces are the most unstable
and easy to access. Then the second neighbor interfaces resonances are the next most
unstable instabilities and so on. Far neighbor instabilities, while having smaller growth
rates than nearest neighbor interfaces, exist also in narrow instability domains, making
them particularly difficult to be observed. Moreover amongst every nearest neighbor TCI,
the strongest are located in the core of the layered structure. To test the robustness of these
results two different studies have been done. The first considers finite thickness interfaces of
piecewise-linear profile, the second consider a statistical number of realizations of unevenly
thick layers. The simple shape of the interface we consider in the first test, allows to
write an explicit dispersion relation when the system has two interfaces. We observe that
small scales waves need higher stratifications to become unstable compared to the sharp
interfaces counterpart. Moreover an infinite number of equally distant instability domains
appear of which solutions have an increasing number of oscillation within the interface. For
the second test linear stability analysis is conducted for a hundred of realizations showing
that unevenly displaced interfaces play a small role in the stability of the layers introducing

negligible variations in the stability of the fluid.

Inspired by the linear stability results, where the strongest instabilities come from near-
est neighbor interactions, we observe their strongest growth happens to be in the limit of
small wavenumbers and Richardson numbers. Therefore, following the defect theory ap-
proximation introduced by Balmforth et al. (2012), where the layers are flattened inside
a defect of horizontal dimension much larger than the vertical one, we obtain a reduced
system of equations. The linear stability analysis of the equilibrium state under these ap-
proximations reduces to solve a dispersion relation of integral form which can be easily
solved numerically. This allows to consider more exotic interface profiles. Assuming hyper-
bolic tangent interfaces allow to study the dependence of the critical Richardson number
for the onset of instability and their subsequent growth rate. We observe that the onset
of instabilities is a non-monotonic function of the thickness, with the bifurcation point be-

ing lowered by small thickening and then increasing for thicker interfaces. At the same
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time the thickness progressively suppresses the growth of unstable waves. A remarkable
investigation is also made possible in the defect limit, by introducing viscosity in the linear
stability analysis. We observe viscosity to have a destabilizing effect on the fluid, not only
it allows resonance-induced instabilities as the inviscid counterpart, but also it makes sta-
ble or unstable otherwise marginally stable waves. This observation cannot be explained
by the waves interaction approach valid for inviscid fluid and therefore a new instability
mechanism must be proposed.

Under the same approximations we consider weakly nonlinear perturbations of the equi-
librium solution. In the limit case of inviscid fluid we obtain an amplitude equation describ-
ing a secondary solution bifurcating subcritically from the equilibrium state. Therefore we
solve numerically the nonlinear equations in the small viscosity limit and observe a subcrit-
ical bifurcation as well. Moreover we confirm the linear stability predictions for which core
layers instabilities destabilize before outer layers instabilities and observe that no matter
which TCI is triggered first, eventually a TCI billow per layer will form. We also observe
that small scales TCI, available at high Richardson numbers, suffer secondary instabilities

in the form of vortex-pairing coalescence.
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Appendix A

TCI related problems

A.1 In-depth linear stability analysis

A.1.1 Randomly displaced interfaces

In geophysical systems layers have a char-
acteristic vertical dimension L and ecach
layer stochastically displaces from it by small
amounts. Here we want to test the reliabil-
ity of linear analysis results for the ideal ge-
ometry of evenly spaced steps explained in
§3.4 when more realistic flow geometries are
accounted. The aforementioned section fo-
cuses on M sharp interfaces (3.8) in the in-
viscid and non-diffusive limit. To introduce
stochasticity in the displacement of interfaces
iny = +1,+3,..., £(M — 1) we consider
{ojlj=—M+3,...,M —3} to be normal
distributed random numbers. Moreover we
choose to keep the density difference between
the layers constant and to keep the outer in-
terfaces in y = £(M — 1).

The comparison to the ideal case is made
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Figure A.1: Density stratification of a fluid
with a number M of interfaces displaced by
{ojlj = —M +3,..., M — 3} from the ideal

configuration shown in figure 3.1.
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with the analogous of figure 3.3 and 3.5 where we superpose a density function which counts
the number of occurrences inside bins of fixed size - the horizontal and vertical domains
are subdivided in 100 x 100 bins - and normalized by the number of realizations (100).
According to figure 3.3 we count the marginally stability curves passing through the bins,
whilst following figure 3.5 we collect ¢. The fluid geometry is shown in figure A.1 and we
run 100 realizations {c;} for the uneven configuration to have an idea on how the stability
analysis results are affected by these displacements.

Here we consider four interfaces embedded in the fluid for which the coefficients matrix

of the linear problem (3.46) becomes

K(3-c)?-1 —e —e? —e3
—€ K(l+o1—¢)?—1 —€ —€2
@7 = , , . (A1)
—€ —€ K(l+o_14+¢) -1 —€
—e3 —e? —€ K@B+c¢)?-1

The two middle interfaces are shifted by o1 and o_; which are random numbers generated
using a normal distribution of standard deviation 0.2. The dispersion relation D(c; J, k) =
det(¢¢) = 0 has eight roots which are computed numerically in the same fashion explained
in §3.4 and following that analysis we show marginal stability lines on the (.J, k)-plane
and a cut through at & = 0.01 computing ¢ as function of J. This computations are
summarized by mean of the density function, shaded colors in figure A.2, and compared to
the evenly spaced configuration (red lines). In panel a) of figure A.2 we show collection of
marginal stability lines and we observe that the strongest departures from the ideal case
are related to the near neighbor interfaces which always involve displaced interfaces. On
the contrary the furthest interfaces (BT B™) are the less affected since are kept in the same
position as in the ideal case. A similar scenario is reported in panel b) of the same figure
where we decided to show only positive phase velocities of unstable modes. The resonance
between nearest-neighbor interfaces is (unsurprisingly) the most affected since is the only
one involving displaced interfaces. Moreover we observe a shift in the bifurcation point and

the possibility of faster and slower growing modes®.

Yin the conclusion write it is in line with the results of Churilov(2016)
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Figure A.2: Stability boundaries (a) and phase velocity ¢ = ¢, + ¢; (b and ¢) for internal gravity

waves in a M = 4 interfaces fluid. The red curves come from the equally spaced layers.

The

100 realizations of {o;} are summarized by showing the shaded density function which counts the

occurrence of a stability boundary inside a grid-cell. In panel a) the dashed line shows where we

cut through (k = 0.01) in panels b) and ¢) We displace the position of the interfaces using a normal

distribution and resume 100 realizations using a density plot (gray regions).
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A.1.2 Piecewise-linear interfaces

In this section we consider a more realistic instance of the two interfaces TCI problem.
The assumption of a sharp density variation is left behind and replaced with the piecewise-
linear interface. We conduct the linear stability analysis of waves, again, in an inviscid
and non-diffusive fluid finding an explicit dispersion relation from the Taylor-Goldstein
equation (3.33). We consider a piecewise-linear density interface, which in term of the
vertical buoyancy field gradient is

1

Oy) = ¥

(1 —sgn(|yl/d - 1)), (A.2)

and d measures the thickness of the interface. The equilibrium profile is then G,(y) =

J[O(y — 1) + O(y + 1)] and the solution of the Taylor-Goldstein equation (3.33) is

AyeHy=1) y>1+d
Yy ly—1<d
V=4 Byt 4+ B_e ™ |yl<1-d (A.3)
(U ly+1| <d
A_etky+1) y<-1-d

where the outer and core part of the solution are solutions of the Helmholtz equation

themselves, whilst ¢, and 1_ are unknown solutions of

&>y - J
—f = —K?*y, where — K?> =k* - ——— (A.4)
dy 2d (y —¢)

inside the two interfaces centered in y = 1 and y = —1. Continuity of the solution and its

derivative at the inner edges of the two interfaces y = +(1 — d) gives the four conditions

A =by+éb_, GiA; = (b, —éb_), (A.5)

A =¢b,+b, G_A_= (b, —b_), (A.6)

where we defined the quantities
kg kd s —2k(1—d) 1L
by = Bye®, Ay =1ie", é=c¢e , Go=-"*= . (A.7)
After some algebra we get the dispersion relation

(Gy—1)(G_+1)— G4+ 1)(G-—-1)=0 (A.8)
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which is useless since G is still an undetermined quantity. Therefore we look for solutions
inside the two interfaces. As we already mentioned, the equation inside the interface is
(A.4), which looks like an Helmholtz equation, but with a wavenumber depending on the
vertical coordinate y. To ease the problem and to remove the dependence upon y, we replace

it by Y.L = 41 inside the interfaces, thus the new wavenumber becomes

J
= -k A.
= i —op (4.9)

Now an explicit solution can be found and asking for continuity of the solution and its

derivative in the outer edges of the interfaces y = £(1 + d), we get
Yy = Age cos 04 T o sin 04| , where 04+ = K4 (y F(1+ d)) (A.10)
+

Now evaluating these solutions in y = £(1 — d), as the definition of G4 asks, we get

1Y _:l:ICj: Ty —k/Ky

O = 1vs = Tk T4 Rl /Ks

, where T’y = tan(2dK4). (A.11)

We solve numerically the dispersion relation (A.8) which produces the results shown in
figure A.3. The instability band with the lowest J follows the result for a discontinuous
pair of interfaces for small k. However, the band then bends upward away and from the
asymptote J = 2k. More instability bands are also available at specific Richardson numbers,
which correspond to normal modes with an increasing number of spatial oscillations within
each interface. These solutions are shown in the insets of figure A.3. The marginally stable
bands occur when G+ = O(1) and provided (A.11) this happens when T} = 0 leading to

the condition
n2r?

=3

(A.12)

marked in figure A.3 by red dots. As for the piecewise-constant stratified fluid, we observe

weaker growth in the higher Richardson number bands - see right panel of figure A.3.

A.2 Weakly non-linear theory

We set up weakly non-linear approximations of the defect equations (3.25) and (3.26) to
describe the primary bifurcation of the laminar solution U = y with background density
profile H(n) = G, (n). We look for solutions that evolve over long timescales, thus we rescale

the time as T' = t. The linear stability of the defect problem suggests that unstable modes
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Figure A.3: Dispersion relation for internal gravity waves growing in a three layers fluid. The two
interfaces are piecewise-linear with thickness d = 0.2. In left panels we show the unstable bands and
the solution of Taylor-Goldstein equation on the marginal stability boundaries. The shaded region
is where the waves are unstable and the black lines correspond to the marginal stability boundaries.
The red dots are predictions (A.12) of where the bands arise and the red dashed line is the k > 1
limit, J = 2k, for sharp interfaces. In the insets we show the solutions on the upper (.—) and lower
(—) marginal stability curve at k& = 0.2. In the right panel we show the maximum growth rate inside

the first five unstable bands.

with different phase velocities do not interact, allowing us tu introduce a reference system
moving at the phase velocity of the unstable wave & = = — ¢t. We define 2 (x,n,t) =
z(z,n,T), and ask for (2(Z,n,T)) = 0. Injecting these rescales into (3.25) and (3.26) and

using the chain rule to unveil the dependence on the newly defined variables we get

(n—c)zz + C;H, = —cz27 — Pz2y, (A.13)
+o0
RAES / z(z,n, T)dn, (A.14)

where H(n) = G,(n) is defined in (3.11). In the expansion procedure we also use the

horizontal average of (A.13) which is

- . 2
5y = (@27),, where (L..) = %/0 (...)dz. (A.15)
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The asymptotic expansion is made in term of € to approximate the vertical gradient of the
background buoyancy H (n), the defect scalar field z(&,n,T), the leading order streamfunc-
tion inside the defect ®(z,T") and the bulk Richardson number J, such that

H=Hy+?Ho+..., z=ez+zm+..., (A.16)

b =ch,+e>Py+... and J=Jy+e’Jo+... (A.17)

where the coefficients of the expansions are O(1). Substituting these expansions in (A.13),
(A.13) and (A.15) and collecting terms of the same order in € give us a number of equations
which allow to describe the primary bifurcation.

At O(e) we find that

_ Hoy®
(n—rc¢)

21 = ®; = A(T)e'™ + c.c.. (A.18)

after integrating the first equation in Z. The leading order streamfunction ®; is given by
a normal mode of wavenumber £ = 1 and propagating at ¢. The temporal evolution of
the amplitude A(7T) will be determined by equations coming from higher orders in €. We
recall that in the defect approximation, these phase velocities are determined by resonances
between nearest neighbor interfaces. Thus system of reference will move at velocities ¢ =
0,£1,£2,...,£(M — 2). Terms of O(e) in the integral equation (A.14) give

2:/+OO ﬂdnzh (A.19)

— (M0

where we substituted (A.18) and called the integral I;. At this order the horizontally
averaged equation (A.15) is identically zero.

At next order, O(g?), the contribution from the defect equation is
Zoz = —(ZlT + Hgnq)zfc + 2177(1)155)/(77 — C), (A.ZO)
and after we integrate horizontally this equation we find

2 _ 52
2o = T3 — HOn(I) HOn (I)l ‘Dl(HOn) :
n—<¢/y

92— ———5 Pz +
n—c m—c? " 2(n—c)

where we used the relation —®, = [ ®1dZ and integrated by part the last term. In this

(A.21)

equation zz and @9 are unknown and are found thanks to the O(g) terms in (A.14) and

(A.15). From the integral equation (A.14) we find

Py = —— (A% + c.c), where I3 = =dn, A.22
4 ( ) —00 (77 - C)d ( )
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in which we used (z(z,n,T)) = 0. From the second order terms in the horizontal average

(A.15) we get

_ T Hy 9
zor = (Pr122z + P2212), = ( 4 ) A A.23
T ( )77 (n—c)? . (‘ | )T ( )
which after substituting z;, z2, ®1 and ®- and integrating in time gives
== Hoy, ) 2 2
Zg = Al* = Ay A.24
(2. (4 = 1401) (a21)

where we assumed A(0) = Ap and Z3(n,0) = 0.

We move to next order, O(g3), and get

230 = — (Hon®P3z + Hoy®1z + 2217 + 219 P23 + 229 P13) /(n — ©), (A.25)

Z3r = (Pr23z + Pozos + @3215)71 , (A.26)
+oo
.,?(I)g = / Z3 d17. (A.27)
—00

By integrating (A.25) in # we obtain an equation where, as in O(e?), the unknowns are z3
and ®3. From (A.14) we find an expression for ®3 in terms of € and its harmonics. By

isolating the contribution of e*® we obtain the amplitude equation
IApr = TA + (I3 + 215) | A A/4. (A.28)

where

+o0 H, +oc0 H.
Iy = / Y dp and I = / 21 dny — 25| Ag|? (A.29)
—00 (77 - C) —o h—C

and we assume |Ay| < 1, which is reasonable since we consider small initial perturbations.
I, I3, I5 are three coefficients of integral form which depend on H(n) - the background
vertical buoyancy gradient.

This is the general setup for the asymptotic analysis and now we focus, as an example,

to the case of M = 4 discontinuous interfaces (3.8) for which (3.11) becomes
H=Gy=J[é(n—3)+5(n—1)+5(n+1)+5(n+3)]. (A.30)

As we stated in (A.17) the Richardson number expands as J = Jy + €2Jo + ... about the
stability boundary Joy = J,(c). While the subscript s indicates it is the bifurcation point for

the sharp interfaces problem, ¢ is the unstable phase velocity of nearest neighbor interfaces
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resonances. As we found in (3.49), from the defect limit linear stability analysis when ¢ = 0
the critical Richardson number is Js(0) = 9/10 and when ¢ = £2 it is Jy(£2) = 450/484.
Now if we plug (A.30) into the integral coefficients of (A.28) we find I3/J(c) = 164/27,
I5/J(c) = 7300/729 and I = 20.J3/9 and the secular solution of (A.28) becomes

I
Al=—5— A 31
A=\ prar (431)

where to keep the solution real Js must be negative, which makes the bifurcation subcritical
as is shown with a dashed line in figure 3.13.

We should note that the results of this section rely on two assumptions: the fluid is
inviscid and the interfaces discontinuous. While these assumptions allow straightforward
analytical results, for numerical purposes are computationally demanding. In our numerical
simulations we assume v > 0 and d > 0 which shift the position of the critical Richardson
numbers. For these reason, in order to compare the results of the weakly non-linear theory
and the numerically computed bifurcation diagram, see figure 3.13, we show the secular
solution (3.64) branching out from the J(e, d) relative to the thick-interfaces problem found
in §3.4.3.

Our last remark in this appendix is about the initial conditions (3.30) and (3.31). If we
plug ¢ = icp into (A.18) we get (3.30), while when ¢ = 2 + i co we get (3.31), triggering a
specific TCI in the fluid.



