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 “… The willingness to risk failure is an essential component of most successful initiatives. The 

unwillingness to face the risks of failure -or an excessive zeal to avoid all risks- is, in the end, an 

acceptance of mediocrity and an abdication of leadership. To use a sports metaphor, if you do not come 

to bat at all, or, when at bat, wait hopefully for a walk, you cannot hit a home run. At best, you can get 

to first base. Major leaguers can decide to play in the minor leagues, and they may have more hits and 

fewer failures there, but their impact on the game and on society would be very much diminished. The 

risk of failure is intrinsic to significant accomplishment. Even the great Babe Ruth struck out almost 

twice as often as he hit home runs. Successful change depends on experimentation with uncertain results. 

A willingness to occupy new ground always involves the risk of losing your footing along the way. We 

must also beware of raising the flag of failure too quickly. The world too often calls it failure if we do 

not immediately reach our goals; true failure lies, rather, in giving up on our goals. …” 

Shapiro HT. The willingness to risk failure. Science. 1990;250(4981):609. doi: 

10.1126/science.250.4981.609. 

 



 

 

Abstract 

Autism Spectrum Disorder (ASD) is the name for a heterogeneous group of complex 

neurodevelopmental conditions, which are clinically defined by: (1) defects in social interaction and 

communication; (2) fixed interests and repetitive behaviors. Given its prevalence and social impact, 

ASD is drawing much interest.  

Molecular basis of ASD is heterogeneous and only partially known. In particular, ASD is genetically 

highly heterogeneous. ASD-associated variants have been characterized in hundreds of genes and 

separate transcriptome studies have identified points of convergence among these loci, proving that 

common biological processes play an essential role in this disorder. However, no common ASD-

associated variants with large effect size, that would be appropriate for its molecular diagnosis, have 

been identified to date, and therefore, diagnosis just relies on clinical assessment and confirmation. 

Many factors, including disorders comorbid with ASD, like Tourette syndrome (TS), complicate ASD 

behavior-based diagnosis and make it vulnerable to bias. 

Since their identification and characterization in serum and plasma of humans and other animals, 

extracellular microRNAs (miRNAs) have attracted researchers for their potential as new non-invasive 

tools for diagnosis, prognosis, and treatment evaluation of many human diseases and disorders. 

Circulating miRNAs can be detected, associated with extracellular vesicles, like exosomes and 

macrovesicles, or conjugated to RNA-binding proteins and lipoproteins, in all mammalian body fluids, 

from serum to saliva. Stability and general consistency of levels among individuals, along with the 

existence of specific expression signatures in association with both physiological and pathological 

conditions, make circulating miRNAs appropriate biomarkers: their convenient features also suggest the 

prospective alternative use of liquid biopsies as sources of biomarkers in the clinic. 

To further investigate ASD heterogeneous etiology and to identify potential biomarkers to support its 

precise (even differential) diagnosis, we used TLDA (TaqMan Low Density Array) technology to profile 

serum miRNAs from ASD, TS, and TS+ASD patients and NCs (unaffected controls). Through 

validation assays, we demonstrated that miR-140-3p is upregulated in ASD vs: NC, TS, and TS+ASD. 

We found that ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale) scores are 

positively correlated and show a linear relationship. Our network functional analysis showed that nodes 

controlled by miR-140-3p, especially CD38 (CD38 molecule) and NRIP1 (nuclear receptor interacting 

protein 1) that are its validated targets, are involved in processes convergingly dysregulated in ASD, 

such as synaptic plasticity, immune response, and chromatin binding. Through biomarker analysis, we 

proved that serum miR-140-3p can discriminate among (1) ASD and NC, (2) ASD and TS, and (3) ASD 

and TS+ASD, showing that it could be particularly useful to strengthen the behavior-based diagnosis of 

either ASD or TS+ASD, which can be challenging in some clinical cases. 



 

 

Among all body fluids, saliva represents the most accessible and complete source of different types of 

molecules that could reflect genetic, epigenetic, environmental, metabolic, emotional, and behavioral 

alterations in ASD. For this reason, we also used NanoString nCounter technology to profile supernatant 

saliva circulating miRNAs from ASD patients and NCs. Through validation assays, we demonstrated 

that both miR-29a-3p and miR-141-3p are upregulated in ASD saliva compared to NC one. We observed 

that ΔCt values for both miRNAs are correlated with overlapping neuropsychiatric scores evaluating 

ASD defects in social interaction and verbal communication. Target genes of miR-29a-3p and miR-141-

3p, in particular the well-documented ASD susceptibility gene PTEN (phosphatase and tensin homolog), 

represent main components and regulators of pathways and processes known to be dysregulated in ASD 

(i.e., PI3K-Akt-mTOR signaling pathway, neuronal differentiation, synaptic function, and methionine 

metabolism). Through biomarker performance evaluation, we proved that saliva miR-29a-3p and miR-

141-3p when used in combination could be useful and non-invasive tools for discriminating ASD 

patients from NCs. In particular, these miRNAs could be used as supportive means for the recognition 

of ASD verbal and social defects. 

Overall, our findings suggest that profiling of circulating microRNAs in body fluids can represent an 

easy and innovative approach to address and solve important biomedical issues, such as the need for 

molecular biomarkers and the necessity to further investigate neurodevelopmental and psychiatric 

disorders through more accessible patient biopsies. In fact, through the characterization of circulating 

miRNAs in serum and saliva from ASD patients, we identified three miRNAs that could facilitate ASD 

clinical assessment and confirmation and that are worth being further investigated for their potential 

central role in neurodevelopment. 
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Chapter 1. Autism Spectrum Disorder 

 

1.1. Autism Spectrum Disorder (ASD): clinical definition and epidemiology 

Autism Spectrum Disorder (ASD) is the name for a heterogeneous group of complex 

neurodevelopmental conditions, which are clinically defined by: (1) defects in social interaction and 

communication; (2) fixed interests and repetitive behaviors. Typically, ASD symptoms become fully 

manifest during school age and have a lifelong impact on everyday functions (American Psychiatric 

Association, 2013). 

The broadening of the autism concept and the resulting changes in ASD categorization have increased 

ASD awareness and improved its diagnostic surveillance in health and educational care. This has led to 

an alarming rise in the number of milder cases of ASD, without co-occurring intellectual disability, in 

developed countries around the world. Prevalence estimates under new ASD classification (American 

Psychiatric Association, 2013) are not available yet. 

According to the Centers for Disease Control and Prevention (CDC) surveillance, approximately 1.5% 

of eight-year-old US children were affected by ASD in 2012: it clearly represents a major public health 

concern. In addition, 1% of English adults had ASD in 2007 (Lyall et al., 2016). Recently, it has been 

reported that ASD affects one in sixty-eight US children and that four males suffer from ASD for every 

female (Christensen et al., 2016).  

Comorbid neuropsychiatric and neurodevelopmental disorders contribute to ASD impairment, being 

common (70.8%) and frequently multiple (57%) in ASD children (Simonoff et al., 2008). Such 

conditions include social anxiety disorder (simultaneously diagnosed in 29.2% of ASD cases), attention-

deficit/hyperactivity disorder (ADHD) (in 28.2% of ASD cases), oppositional defiant disorder (ODD) 

(in 28.1% of ASD cases), chronic tic disorder (in 9% of ASD cases), obsessive-compulsive disorder 

(OCD) (in 8.2% of ASD cases), and Tourette syndrome (TS) (in 4.8% of ASD cases) (Figure 1.1) 

(Simonoff et al., 2008). 
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Figure 1. 1. Weighted 3-month prevalence rates for other DSM-IV diagnoses in comorbidity with 
ASD in a British cohort of 112 ASD patients (Simonoff et al., 2008). 

 

1.2. Heterogeneity of ASD etiology: genetic, epigenetic, and environmental factors 

The exact etiology of ASD still remains unknown. Strong evidence suggests that ASD may arise from 

genetic, epigenetic, and environmental factors (Vorstman et al., 2017; Nardone and Elliott, 2016; Sun 

et al., 2016; Abdolmaleky et al., 2015).  

ASD is genetically highly heterogeneous. Both inherited and de novo ASD-associated variants have 

been characterized in hundreds of genes (Figure 1.2). Separate transcriptome studies, aiming to identify 

points of convergence among these heterogeneous ASD-associated loci, show that common biological 

processes (discussed in Sections 1.3-4) play an essential role in this disorder. Much about ASD genetic 

origin and modes of inheritance has been understood through the investigation of rare medical genetic 

syndromes with high penetrance for ASD (Figure 1.2) (de la Torre-Ubieta et al., 2016).  
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Figure 1. 2. Insight into the complex genetic architecture of ASD: lessons from rare syndromes with 
known genetic etiology and high incidence of autism and from genes recently identified to be 
associated with autism (de la Torre-Ubieta et al., 2016). Panel (A) shows inheritance patterns for 
syndromes and genes, whereas panel (B) reports all the different types of genetic variation observed for 
those. 

 

Both inherited and de novo rare genetic variants (Figure 1.2A, left, middle-left, and middle-right panels) 

can be detected in 10-30% of ASD cases (Vorstman et al., 2017). Single common inherited variants 

(Figure 1.2A, right panel) can be found in approximately 1.1-1.2% of ASD cases; when considered 

cumulatively, these can explain 15-50% ASD cases (Vorstman et al., 2017). Therefore, at the two 

extremes on the allelic spectrum (Geschwind, 2011), syndromic forms of ASD represent rare 

exceptional cases associated to variants with large effect sizes, whereas common variants with small to 

moderate effect sizes increase susceptibility to ASD, without being individually sufficient to be causal 

(Figure 1.3). However, no common risk loci for ASD, that would be appropriate for its molecular 

diagnosis, have been identified to date (Figure 1.3) (Vorstman et al., 2017). 
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Figure 1. 3. Effect sizes of rare and common variants associated with ASD (Geschwind, 2011). 
Association studies have helped the identification of SNPs associated with ASD with small to modest 
effect sizes; mutation screens and CNV studies, as well as the investigation of syndromic forms of ASD, 
have aided the discovery of rare variants with large effect sizes. Lower frequency intermediate effect 
alleles (depicted as ovals with dotted lines) still remain unexplored, and at the moment, there is no 
evidence supporting the existence of common alleles of large effect for ASD, those that could be 
efficiently used for its molecular diagnosis. 

 

Several analyses performed in post-mortem brain and blood samples demonstrate the involvement of 

DNA methylation alterations in the etiology of ASD (Abdolmaleky et al., 2015). Recent histone 

acetylome analysis has identified widespread and stable histone acetylation changes in syndromic and 

idiopathic ASD prefrontal and temporal cortical regions, that are both involved in social cognition, 

proving that this disorder may also arise from histone modifications: it is worth noting that those histone 

acetylation changes are over-represented near ASD gene candidates (Sun et al., 2016). 

Moreover, consistent evidences indicate that ASD-linked epigenetic and immune dysregulation are 

causally dependent. In fact, both MIA (maternal immune activation) and maternal autoimmune diseases 

are associated with ASD and can be considered as in utero environmental insults, for the developing 

fetus, that, similarly to other known determinants like maternal age, diet, stress, depression, smoking, 

and serum folate levels (Abdolmaleky et al., 2015), have a strong impact on epigenetic mechanisms 

such as DNA methylation and histone acetylation (Nardone and Elliott, 2016). 

Finally, many prenatal and perinatal factors, immune factors, maternal dietary and lifestyle factors, and 

environmental chemicals have been proposed with some level of converging evidence as candidate risk 

factors for ASD over the past decade (Lyall et al., 2016). 
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1.3. Multiple levels of ASD alterations 

Neurotypical behavioral and cognitive functioning is the result of normal brain development, a complex 

phenomenon harmonized and finely regulated at multiple levels, requiring the generation, migration, 

and positioning of the correct number and type of cells, the growth and targeting of neuronal processes, 

and the formation of the precise number and type of synapses (de la Torre-Ubieta et al., 2016). Several 

molecular, cellular, and circuital alterations of all of these mechanisms have been identified in ASD 

(Figure 1.4) (de la Torre-Ubieta et al., 2016).  
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Figure 1. 4. Multiple levels of alteration in ASD (de la Torre-Ubieta et al., 2016). A typical social and 
cognitive functioning is the result of normal brain development, a complex phenomenon that is finely 
regulated at the molecular (A), cellular (B), and circuital (C) levels. Several alterations of mechanisms 
at all of these levels have been identified in ASD. (A) Genes within these developmental pathways for 
which there is genetic evidence for a link to ASD are depicted in gold. (B) Cellular events (and 
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corresponding pathways, see numbers) responsible for altered fetal cortical development and synaptic 
function observed in ASD. RG, radial glia; oRG, outer radial glia; IP, intermediate progenitor; MN, 
migrating neuron; EN, excitatory neuron; IN, interneuron; A, astrocyte; VZ, ventricular zone; ISVZ, 
inner subventricular zone; OSVZ, outer subventricular zone; IZ, intermediate zone; SP, subplate; CPi, 
inner cortical plate; Cpo, outer cortical plate; MZ, marginal zone. (C) Altered neuroanatomical 
phenotypes in ASD, regarding brain growth, cortical cytoarchitecture, and brain connectivity, emerge 
from defective neurogenesis, differentiation, migration, patterning, and synaptogenesis, in combination 
with reactive microglia infiltration and astrocytosis. E/I, excitatory or inhibitory neuron; U/D, upper-
layer or deep-layer neuron; WM, white matter. 

All the heterogeneous ASD susceptibility genes converge in a small number of commonly dysregulated 

biological processes and pathways, like synaptic function (including long-term potentiation and calcium 

signaling), immune and inflammatory responses, signaling by WNT, NOTCH, and SWI/SNF 

(switch/sucrose non-fermentable) and NCOR (nuclear receptor corepressor) complexes, and PI3K 

(phosphatidylinositol-4,5-bisphosphate 3-kinase)/mTOR (mammalian target of rapamycin) signaling 

(Figure 1.4A) (Levitt and Campbell, 2009; Chen et al., 2014; Voineagu and Eapen, 2013; 

Gokoolparsadh et al., 2016; Ansel et al., 2017). Resultant micro- and macro-structural and functional 

abnormalities, which emerge during brain development in ASD, create the dysfunction of neural 

networks involved in socio-emotional processing (Vissers et al., 2012; Maximo et al., 2014; Kern et al., 

2015; Ecker, 2017).  

Neuroanatomical studies prove that ASD is accompanied by differences in brain anatomy, functioning 

and connectivity (Figure 1.4C), highly variable depending on stage of development and biological sex. 

Between the age of 2–4 years, the brain of children with ASD is enlarged in total volume: this early 

brain overgrowth may slow down or arrest during early and late childhood, and then, turn into an 

accelerated decline in whole brain volume by late adolescence and early adulthood. Perturbations in the 

development of cortical white matter and corpus callosum may be already present in infants with ASD 

scanned at 6 months of age (Ecker, 2017). Histological studies show differences in neuronal density 

across cortical layers (Figure 1.4B-C), suggesting abnormalities in the cellular mechanisms of migration 

and apoptosis driving cortical development in ASD, which may contribute to the observed early brain 

overgrowth.  

Evidence of ASD cortical underconnectivity (typically in adolescence and adulthood) and 

overconnectivity (in childhood) involving multiple brain networks have been reported (Figure 1.4C). 

Long-range underconnectivity is a consistent finding in ASD, while results on short-range disrupted 

connectivity are variable, depending on the areas of the brain examined (Vissers et al., 2012; Maximo 

et al., 2014). The severity of the disorder is correlated with both kind of disrupted functional brain 

connectivity, suggesting that overconnectivity, despite being hyperspecialized, is inefficient in any case. 

Long-range connectivity is responsible for conscious processing, central coherence, and information 

processing and integration: so, its impairment may contribute to all the cognitive and behavioral 

difficulties typical of ASD (Vissers et al., 2012; Maximo et al., 2014). This form of neuropathology 
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observed in ASD has also been found in ADHD and TS, which are known to share similar 

symptomatology with ASD (Kern et al., 2015). Atypical effective connectivity (Maximo et al., 2014) 

and impaired anatomical connectivity (Vissers et al., 2012; Maximo et al., 2014) in ASD have also been 

explored. 

Many individual components of the nervous system have been independently associated to ASD: fronto-

temporal and fronto-parietal regions, limbic brain regions, the fronto-striatal circuitry, and the 

cerebellum (Figure 1.4C). Atypical neural structures in ASD, such as the amygdala, overlap with regions 

that are integral parts of the so-called social and emotional brain, involved in social cognition and 

emotional processing (Ecker, 2017).  

 

1.4. Converging molecular mechanisms in ASD 

ASD is a highly hereditable condition characterized by marked genetic heterogeneity. Therefore, much 

effort has been put in large transcriptomic studies on post-mortem brain samples, aiming to discover, 

through the WGCNA (weighted gene co-expression network analysis) approach, if this myriad of 

genetic or environmental risk factors convergingly perturbed common underlying molecular pathways 

important for brain development (Voineagu et al., 2011; Parikshak et al., 2016; Wu et al., 2016).  

These studies proved that regional patterns of gene expression that typically distinguish frontal and 

temporal cortex in normal brain are significantly attenuated in the ASD brain, suggesting alterations in 

cortical patterning (Voineagu et al., 2011; Parikshak et al., 2016). A genetically defined subtype of ASD, 

the chromosome 15q11.2-13.1 duplication syndrome (dup15q) endophenotype, shares the core 

transcriptomic signature observed in idiopathic ASD (Parikshak et al., 2016).  

Through WGCNA approach, two main modules of co-expressed genes were found to be associated with 

ASD (Figure 1.5): (i) a downregulated neuronal module, enriched for known autism susceptibility genes 

and neuronal genes involved in synaptic function, and (ii) an upregulated module enriched for genes 

related to inflammatory and immune pathways and glial markers and function (Voineagu et al., 2011; 

Parikshak et al., 2016; Wu et al., 2016).  
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Figure 1. 5. Two main gene co-expression modules are associated with ASD (Voineagu et al., 2011). 
Panels (A), (B), and (C) refer to the neuronal module, while panels (D), (E), and (F) represent the 
immune-glial one. For each ASD-associated module, heatmap of genes belonging to the module, 
corresponding module eigengene values across all samples, visualization of the module, and relevant 
gene ontology categories enriched in it are reported. 

Microglial and synaptic modules exhibit significant anticorrelation (Parikshak et al., 2016). The 

neuronal module is enriched for genetically associated variants, whereas the immune-glial module 

shows no enrichment for those, indicating a less pronounced genetic component for this immune 

upregulation, that is most likely either a secondary phenomenon or caused by environmental factors 

(Voineagu et al., 2011).  

Collectively, these studies confirmed that transcriptional dysregulation is an important underlying 

mechanism of neuronal dysfunction in ASD and proved that diverse genetic perturbations can lead to 

phenotypic convergence at multiple biological levels in this complex neurodevelopmental disorder. 

These findings also provided a first molecular neuropathological basis for ASD. Since immune 
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molecules and cells such as microglia play a role in synaptic development and function, the observed 

immune up-modulation could be related to abnormal ongoing plasticity in ASD brain, a hypothesis 

supported by the striking attenuation of transcriptional differences observed between frontal and 

temporal cortex in ASD (Voineagu et al., 2011). 

 

1.5. ASD behavior-based diagnosis 

Since common risk loci for ASD have not been proposed yet (Vorstman et al., 2017), a molecular test 

for non-syndromic ASD is not available and diagnosis relies on clinical assessment and confirmation. 

Clinical diagnosis of ASD depends on behavioral observations, according to the Diagnostic and 

Statistical Manual of Mental Disorders (5th ed.; DSM–5; American Psychiatric Association, 2013) 

(Figure 1.6).  
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Figure 1. 6. Panel reporting DSM-5 diagnostic criteria for ASD (Constantino and Charman, 2016). 

 

Accepted gold standard tools for diagnostic assessment of ASD are the Autism Diagnostic Observation 

Schedule (ADOS) and the Autism Diagnostic Interview-Revised (ADI-R) (Falkmer et al., 2013). 

Considering the clinical variation and etiological heterogeneity of ASD, a precise diagnosis can be very 

difficult. Behavior-based ASD gold standard diagnosis is a challenging process because: (i) it depends 

on the expertise of a multi-disciplinary team and on the quality of reports provided by caregivers and 

teachers; (ii) it is based on the direct observation of behavioral features and traits that are continuously, 

not categorically, distributed in the general population; (iii) it can be complicated by the wide range of 

ASD causes and presentations (Figure 1.7) and by its association with comorbid disorders (Figure 1.1) 

(Constantino and Charman, 2016); (iv) it depends on the use of different information gathering tools, 
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vulnerable to subjectivity and interpretive bias and often inappropriate to represent age, biological sex, 

and socio-cultural setting diversity of patients (Falkmer et al., 2013; Constantino and Charman, 2016; 

Varma and Iskandar, 2014).  

 

Figure 1. 7. Panel reporting severity specifiers for each DSM-5 diagnostic criterion for ASD 
(Constantino and Charman, 2016). Severity specifiers translate the effect of symptoms in each criterion 
domain (social interaction and communication, fixed interests and repetitive behaviors) onto three 
broad categories of adaptive functioning, reflecting the level of support that an ASD patient would 
require. 

 

Therefore, there is an urgent need for potential ASD biomarkers that could support clinical 

discrimination of patients. The identification of ASD biomarkers could provide complementary and 

supportive means for a simpler, faster, and unbiased diagnosis and insight into ASD heterogeneous 

molecular basis. 
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Chapter 2. Circulating microRNAs as potential biomarkers for 

neurodevelopmental disorders 

 

2.1. MicroRNAs (miRNAs): the best characterized class of non-coding RNAs 

A genome is the complete set of DNA of an organism and each genome contains all of the information 

needed to build and maintain that organism, allowing it to grow and develop. Thanks to new NGS (next-

generation sequencing) technologies it is now possible for scientists to easily retrieve these complete 

sets of genetic instructions, but still the biggest question about their interpretation remains open. How 

to decipher this unique genetic information, and finally, understand how each organism works? 

The first successful attempts to interpret the genome were based on two general principles, stated by F. 

H. C. Crick in 1958, that have really shaped our proteome-based vision of the genome: the Sequence 

Hypothesis and the Central Dogma. The former assumes that the specificity of a nucleic acid is 

expressed solely by its base sequence, and that this sequence represents a simple code to produce a 

particular protein. The latter simply retraces the flow of sequence information and states that once 

information has passed into protein it cannot get out again (Figure 2.1) (Crick, 1958). 

 

Figure 2. 1. Visualization of the Central Dogma by F.H.C. Crick (Crick, 1970). “In more detail, the 
transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, 
but transfer from protein to protein, or from protein to nucleic acid is impossible” (Crick, 1958). 

 

As a consequence of the overestimation and misunderstanding of these two useful and inspiring 

principles, RNA was tacitly consigned to be the template (messenger RNA) and infrastructural platform 

(ribosomal and transfer RNAs) for protein synthesis.  



Chapter 2 

17 
 

However, sequencing studies on the whole genome of many organisms of increased developmental 

complexity (Haemophilus influenzae and Mycoplasma genitalium in 1995, Saccharomyces cerevisiae 

in 1996, Caenorhabditis elegans in 1998, Drosophila melanogaster in 2000, Homo sapiens in 2001) 

quickly taught scientists that the number of protein-coding genes does not reflect the complexity of 

organisms and that the extent of protein-coding sequences remains relatively static over a wide range of 

developmental complexity (an unexpected finding that formulated the G-value enigma) (Figure 2.2B). 

On the contrary, the non-coding genome size gets bigger as the structural complexity of organisms 

increases (Figure 2.2A) (Taft et al., 2007). Surprisingly, what made more sophisticated organisms 

different from less complex ones was the fact that their genome contained more DNA of unknown 

function, that was consequently referred to as “junk” DNA. 

 

Figure 2. 2. Percentage of non-coding DNA (A) and amount of protein-coding sequences (B) per 
haploid genome across species (Taft et al., 2007).  

 

The ENCODE Project (ENCODE Project Consortium, 2007; ENCODE Project Consortium, 2012), 

aiming to delineate all functional elements encoded in the human genome, marked the ending of the 
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“junk” DNA. The consortium confirmed that the human genome, of which less than 2% encodes for 

proteins, is pervasively transcribed and identified previously unrecognized transcription start sites 

responsible for the production of many novel non-coding transcripts. Also, it assigned to the vast 

majority (80.4%) of the human genome at least one biochemical RNA- and/or chromatin-associated 

event with a regulatory function.  

Our DNA is no longer “junk” but still a “dark matter”: however, regulatory non-coding RNAs may 

represent keys to the interpretation of our complexity in a new transcriptome-based vision of the 

genome. Our knowledge about the human non-coding transcriptome is continuously expanding. Figure 

2.3 depicts the distribution of non-coding RNA types within the human genome (Malek et al., 2014). 

 

Figure 2. 3. Distribution of non-coding RNA types within the human genome (Malek et al., 2014).  

 

MicroRNAs (miRNAs) represent the best characterized class of non-coding RNAs to date and they were 

the first one giving researchers some precious hints about the important regulatory role of non-coding 

RNA molecules and offering them just a glance at all the hidden layers of regulation of gene expression.  

MiRNAs are 18-25 nucleotides long single-stranded RNAs that act as evolutionary conserved post-

transcriptional regulators of gene expression, collectively increasing the precision and robustness of 

gene-regulatory networks and affecting all cellular pathways, from development to homeostasis, 

response to external factors, and metabolism (Berezikov, 2011). They negatively modulate the 

expression of their target mRNAs by binding to miRNA-binding sites present in the 3′-UTR of their 
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targets mRNAs through a specific sequence, named seed region, that is a string of at least 6 nucleotides 

starting at position two of the 5′ of the miRNA (Figure 2.4) (Filipowicz et al., 2008).  

 

Figure 2. 4. Principles of microRNA–mRNA interactions in Metazoans (Filipowicz et al., 2008). 
There must be a perfect and contiguous base pairing between the miRNA seed region and the specific 
target mRNA. Bulges or mismatches must be present in the central region of the miRNA–mRNA duplex. 
Finally, there must be reasonable complementarity of the target mRNA to the miRNA 3′ half to stabilize 
the interaction. Mismatches and bulges are generally tolerated in this region. 

 

Usually, miRNA-binding sites specific for the same or different miRNAs are present in multiple copies 

in the mRNA 3′ UTR. Therefore, a single miRNA can control the expression of several mRNAs, and a 

single mRNA may be targeted by more than one miRNA. Importantly, miRNA-binding sites are 

generally required in multiple copies for effective repression: when these are present close to each other, 

they tend to act cooperatively (Figure 2.5) (Filipowicz et al., 2008).  

 

Figure 2. 5. A quantitative model of microRNA function (Ameres and Zamore, 2013). The relative 
abundance of miRNAs and their targets inside the cell, together with the cumulative abundance of all 
target sites in the cell relative to the abundance of the miRNA, dictate the regulatory outcome.  

 

High complementarity of the target mRNA to the miRNA 3′ half leads to the direct cleavage of the 

mRNA, whereas low complementarity between these sequences causes mRNA translational repression 

or decay (Figure 2.6) (Ameres and Zamore, 2013). These molecular mechanisms are mediated by the 
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RISC (RNA-induced silencing complex) complex that includes proteins belonging to the AGO 

(Argonaute) family; specifically, RISC endonuclease activity depends exclusively on AGO2 protein 

(Figure 2.7) (Filipowicz et al., 2008). 

 

Figure 2. 6. MiRNA function in animals (Ameres and Zamore, 2013). (A) The vast majority of plant 
miRNAs and just few animal miRNAs direct endonucleolytic cleavage of their mRNA targets. (C) In 
animals, miRNAs can mediate translational repression through the block of translational initiation, the 
mRNA poly(A) tail shortening or the recruitment of protein cofactors that can interfere with translation. 
(D) In many cells and tissues, miRNA-directed translational repression can be indistinguishable from 
mRNA turnover induction via decapping and 5ʹ‑to‑3ʹ decay. 
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Figure 2. 7. MiRNA biogenesis (Ameres and Zamore, 2013). A primary miRNA (pri-miRNA) can be 
transcribed by RNA polymerase II from independent genomic transcription units or from the introns of 
protein-coding genes. It has a stem-loop structure with a m7Gppp (7‑methylguanosine) cap and a 3’ 
poly(A) tail. The nuclear RNase III Drosha, along with the dsRNA-binding protein DGCR8, generates 
a precursor miRNA (pre-miRNA) with a ~60 nucleotide stem-loop structure. In the cytoplasm, the 
cytoplasmic RNase III Dicer, together with the dsRBP TRBP, cleaves the loop of the pre-miRNA 
producing a miRNA-miRNA* duplex, containing sequences that were at the 5’ and 3’ arms of the pre-
miRNA, that will be loaded into an AGO protein as a dsRNA. However, the mature RISC will only load 
the more thermodynamically stable miRNA strand of the duplex, while the other one will be degraded. 
Cytoplasmic destinations of miRNAs include both P bodies and polysomes. 

 

Extensive studies have shown that miRNAs control cellular processes, such as cell proliferation, 

differentiation, migration, cell death, and angiogenesis, which are crucial in the pathogenesis of cancer. 

Many miRNAs have been mainly identified as potential oncogenes or tumor suppressors in cancer 

development and progression and have been reported to be causally related to the neoplastic features of 

the cells (Ragusa et al., 2017).  

 



Chapter 2 

22 
 

2.2. Role of miRNAs inside the nervous system cells 

Other than in neoplastic and degenerative diseases, miRNA dysregulation has also been observed in 

several neurodevelopmental and neuropsychiatric disorders, such as schizophrenia, major depressive 

disorder, anxiety, BD (bipolar disorder), and ASD (Geaghan and Cairns, 2015; Omran et al., 2012; Scott 

et al., 2015). Some miRNAs show differential spatio-temporal and sex-biased expression patterns in the 

developing human brain and regulate targets that are highly enriched for genes related to transcriptional 

regulation, neurodevelopmental processes, and common neurodevelopmental disorders, such as ASD, 

schizophrenia, and BD (Ziats and Rennert, 2014). MiRNAs are main players in the brain, where they 

control many developmental processes, including patterning, cell specification, local translational 

control of neuronal plasticity (Figure 2.8), neurogenesis, and neuronal apoptosis (Kosik, 2006).  

 

Figure 2. 8. MicroRNA local translational control of neuronal plasticity (Kosik, 2006). Stimulation 
by neurotransmitters or neurotrophic factors can regulate the local translation of mRNAs in polysomes 
found at the base of dendritic spines, a process that can be further controlled by miRNAs. Silenced 
mRNAs can be also translocated to dendrites through other silencing structures such as RNA granules 
and RBP (RNA binding protein) platforms. The image shows a peculiar rat example: Limk1(LIM-
domain kinase 1) mRNA controlled by miR-134. miR-134 is expressed in the rat hippocampus, and its 
expression increases as the brain matures. Limk1 is a kinase that can affect spine structure by regulating 
actin filament dynamics. When Limk1 mRNA is translationally inhibited by miR-134 the size of spines 
is negatively regulated. Intriguingly, it has been shown that the miRNA maintains the translational 
silencing of its target until a synaptic input overrides the silencing. 
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2.2. Intracellular dysregulation of miRNAs in ASD 

Altered expression patterns of miRNAs have been found in many tissues and cells from ASD patients, 

such as brain cortex regions and cerebellum (Ander et al., 2015; Mor et al., 2015; Wu et al, 2016; 

Schumann et al., 2017), olfactory mucosal stem cells (Nguyen et al., 2016), peripheral whole blood 

(Huang, Long et al., 2015; Huang, Zhou et al., 2015), and lymphoblastoid cell lines (Sarachana et al., 

2010; Ghahramani Seno et al., 2011). 

A large genome-wide miRNA expression profiling study on post-mortem human brain samples, using 

the WGCNA approach (see Chapter 1, Section 1.4), identified (i) miR-21-3p as upregulated in ASD and 

targeting neuronal genes downregulated in ASD, and (ii) hsa_can_1002-m, a previously unknown, 

primate-specific miRNA, as downregulated in ASD and regulating the epidermal growth factor receptor 

and fibroblast growth factor receptor signaling pathways involved in neural development and immune 

function (Wu et al, 2016). 

2.3. Extracellular miRNAs as non-invasive biomedical tools: the alternative use of 

liquid biopsies in neurodevelopmental and psychiatric disorders 

Since their identification and characterization in serum and plasma of humans and other animals (Chen 

et al., 2008; Chim et al., 2008), extracellular miRNAs have attracted researchers for their potential as 

new non-invasive tools for diagnosis, prognosis, and treatment evaluation of many human diseases and 

disorders. Extracellular miRNAs can be detected, associated with extracellular vesicles, like exosomes 

and macrovesicles, or conjugated to RNA-binding proteins and lipoproteins, in all mammalian body 

fluids: saliva, tears, urine, amniotic fluid, colostrum, breast milk, bronchial lavage, cerebrospinal fluid, 

vitreous humor of the eye, peritoneal fluid, pleural fluid, seminal fluid, and also feces, aside from serum 

and plasma (Figure 2.9) (Larrea et al., 2016).  
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Figure 2. 9. Biological fluids as sources of potential miRNA-based biomarkers (Larrea et al., 2016). 
LDL: Low-density lipoprotein; HDL: High-density lipoprotein; MVB: Multivesicular body. 

 

Stability and general consistency of levels among individuals, along with the existence of specific 

expression signatures in association with both physiological and pathological conditions, make 

circulating miRNAs appropriate biomarkers; these also suggest the prospective alternative use of liquid 

biopsies as sources of biomarkers in the clinic (Weiland et al., 2012; Larrea et al., 2016).  

Numerous studies have identified either serum or plasma circulating miRNAs as promising biomarkers 

for neurodevelopmental and neuropsychiatric disorders, as ADHD (Wu et al., 2015), ASD (Mundalil 

Vasu et al., 2014; Chapters 3 and 4 of this doctoral thesis), TS (Rizzo et al., 2015), depression/anxiety 

disorder (Wang, Sundquist et al., 2015), posttraumatic stress disorder (Balakathiresan et al., 2014), BD 

(Rong et al., 2011), schizophrenia (Wei et al., 2015), and epilepsy (Wang, Tan et al., 2015; Wang, Yu 

et al., 2015; An et al., 2016), and other brain pathological conditions, like traumatic brain injury (Di 

Pietro et al., 2017) and vascular dementia (Ragusa et al., 2016). 

However, when studying circulating miRNAs in pathologies, the biggest challenges are (i) to elucidate 

the relationship between the diseased tissue and the corresponding expression levels of these molecules 

observed in liquid biopsies and (ii) to verify if and how accurately these extracellular RNAs would 

reflect the transcriptomic snapshot of the physiological and pathological status of original cells (Ragusa 

et al., 2017). MiRNAs in circulation could either be passively released non-specific by-products of 

cellular activity and cell death or actively secreted cell-cell signaling messengers (Figure 2.10) (Larrea 

et al., 2016).  
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Figure 2. 10. The two hypotheses on the origin and biogenesis of circulating miRNAs (Kumarswamy 
and Thum, 2013).  

 

In many neurodevelopmental and psychiatric disorders, as it is for ASD (see Chapter 1, Section 1.3), 

these challenges are further complicated by the fact that a specific and unique diseased tissue has not 

been identified yet. Focusing on the contribution of extracellular vesicles, such as exosomes, to the 

expression of circulating miRNAs might help clarify potential tissue-body fluid links (Witwer, 2015).  

 

2.4. Project hypotheses and aims: an easy and innovative approach to address 

important biomedical questions and needs 

My PhD research project consists of two studies, profiling circulating miRNAs in serum and saliva from 

ASD patients, respectively. To date, these two series of experiments specifically represent the third and 

fourth high-throughput studies profiling miRNAs in a body fluid from ASD patients, confirming that 

this research field is still mostly unexplored.  

We hypothesized that the expression analysis of circulating miRNAs in serum and saliva could represent 

an easy and innovative approach to address and solve important biomedical issues related to ASD, such 

as the need for molecular biomarkers and the necessity to further investigate this disorder through more 

accessible patient biopsies.  
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In fact, while there are many studies proposing circulating miRNAs as appropriate biomarkers for 

human pathology, only a few of them exploit this easy liquid biopsy-based investigation approach in 

order to propose to the scientific community new potentially intriguing pathological mechanisms and 

central effectors in them. Even though retracing the role of dysregulated circulating miRNAs in a 

disorder is challenging (see Section 2.3) and making hypotheses about it can be very risky and 

misleading, using computational analyses to reconstruct their possible intracellular regulatory networks 

and functions can still be useful to gain further insight into the molecular basis of the disorder.  

This is a particularly valuable option when investigating neurodevelopmental disorders, for which 

preferable tissue biopsies (post-mortem brain samples) are not readily and easily accessible to 

researchers. Overall, our computational analysis findings confirmed the validity of this alternative 

research use of liquid biopsies, since we were able to identify, at the same time, already known and 

completely new processes and molecules with a (potential) role in ASD. 
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Summary of research 
 

In my PhD research project, I profiled circulating miRNAs in serum and saliva from ASD patients to 

gain further insight into ASD heterogeneous etiology and pathological mechanisms and to identify 

potential biomarkers to support its behavior-based diagnosis, using an easy liquid biopsy-based 

investigation approach. 

Chapter 3 describes the serum study and was adapted from the manuscript titled with “Expression and 

Regulatory Network Analysis of miR-140-3p, a New Potential Serum Biomarker for Autism Spectrum 

Disorder” published in August 2017 on the scientific journal “Frontiers in Molecular Neuroscience” and 

co-authored by Cirnigliaro M, Barbagallo C, Gulisano M, Domini CN, Barone R, Barbagallo D, Ragusa 

M, Di Pietro C, Rizzo R, and Purrello M. Our serum circulating miRNA profiling through TLDA 

(TaqMan Low Density Array) technology led us to the identification of miR-140-3p as a possible 

biomarker performing at a high level in the discrimination among ASD and TS+ASD patients and as a 

potential player in the regulation of altered circadian rhythms in ASD. 

Chapter 4 reports the more recent saliva study and represents the first draft of a new manuscript that is 

about to be submitted. Through a supernatant saliva circulating miRNA profiling by using NanoString 

nCounter technology, we found miR-29a-3p and miR-141-3p as possible supportive means for the 

recognition of ASD verbal and social defects that can be efficiently used in combination and we 

proposed them as intriguing targets for future investigation given their potential central role in 

neurodevelopment.   

Both of these successful initiatives were possible thanks to the inspiring and fertile collaboration 

between the research group coordinated by Professor Michele Purrello, that I have joined for my PhD 

program, and the research team from the Section of Child and Adolescent Psychiatry at University of 

Catania led by Professor Renata Rizzo. Both Professors conceived the two projects with contributions 

by their group members. Our research group was in charge of designing and performing all the 

experiments and subsequent analyses. Professor Renata Rizzo and her collaborators were in charge of 

the recruitment and clinical assessment of study participants, of the sampling process, and of a critical 

revision of our combined results. I am extremely grateful to my Supervisor for the amazing opportunity 

that he has been giving me for these three years of playing a central role in both of these scientific 

adventures. 
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Chapter 3. Expression and Regulatory Network Analysis of miR-

140-3p, a New Potential Serum Biomarker for Autism Spectrum 

Disorder 

 

3.1. Abstract 

Given its prevalence and social impact, ASD is drawing much interest. Molecular basis of ASD is 

heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like 

TS (Tourette syndrome), complicate ASD behavior-based diagnosis and make it vulnerable to bias. To 

further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, 

we used TLDA (TaqMan Low Density Array) technology to profile serum miRNAs from ASD, TS, and 

TS+ASD patients and NCs (unaffected controls). Through validation assays in 30 ASD, 24 TS, and 25 

TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs: NC, TS, 

and TS+ASD (Tukey’s test, p-values = 0.03, = 0.01, < 0.0001, respectively). ΔCt values for miR-140-

3p and YGTSS (Yale Global Tic Severity Scale) scores are positively correlated (Spearman r = 0.33; 

BH (Benjamini-Hochberg) FDR (False Discovery Rate) adjusted p-value = 0.008) and show a linear 

relationship (p-value = 0.002). Network functional analysis showed that nodes controlled by miR-140-

3p, especially CD38 (CD38 molecule) and NRIP1 (nuclear receptor interacting protein 1) that are its 

validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic 

plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-

3p can discriminate among: (1) ASD and NC (AUC, Area under the ROC curve: 0.70; sensitivity: 

63.33%; specificity: 68%); (2) ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%); (3) 

ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%). Characterization of miR-140-

3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a 

potential non-invasive biomarker for ASD, easy to test through liquid biopsy. 

 

3.2. Specific background and aims 

One of the biggest revisions about ASD that have been introduced in DMS-5 is the possibility and 

appropriateness to simultaneously diagnose ASD with other disorders when there is ample evidence for 

comorbidity (American Psychiatric Association, 2013). In fact, many different comorbid 

neuropsychiatric and neurodevelopmental disorders contribute to ASD impairment, being common 
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(70.8%) and frequently multiple (57%) in ASD children (Simonoff et al., 2008). Such conditions include 

social anxiety disorder, ADHD, ODD, chronic tic disorder, and OCD.  

Tourette syndrome is a neurodevelopmental disorder characterized by considerable motor as well as 

behavioral impairment: it affects approximately 1% of the population with a male:female ratio of 3:1. It 

is clinically defined by childhood onset of multiple motor tics and at least one phonic tic, which 

collectively must persist for at least 12 months (American Psychiatric Association, 2013). 88% of TS 

patients also show comorbidity and psychopathology. Comorbidity with ADHD and OCD is very 

common. Co-existent psychopathologies include depression, anxiety, learning difficulties, personality 

disorder, ODD, and conduct disorder (Robertson, 2012). TS can cause severe difficulties in social 

functioning and a reduced quality of life in patients suffering from it. Characteristic, but not essential 

for diagnosis, symptoms include complex tics, such as echolalia and echopraxia (copying others’ 

vocalizations and actions, respectively), palilalia and palipraxia (repeating own words/phrases and 

actions, respectively), coprolalia (inappropriate involuntary swearing) as well as repeating of complex 

words (Robertson 2015). 

It has been observed that 4.8% of ASD children also suffer from TS (Simonoff et al., 2008) and that 6-

11% of TS cases show comorbidity with ASD (Robertson, 2012). TS and ASD share clinical 

symptomatology and many behavioral features. Genetic studies also support the existence of common 

susceptibility genes in both disorders (Clarke et al., 2012). The exact etiology of both disorders is still 

elusive. 

Since common risk loci for ASD have not been proposed yet (Vorstman et al., 2017), a molecular test 

for non-syndromic ASD is not available and diagnosis relies on clinical assessment and confirmation. 

Considering the clinical variation and etiological heterogeneity of ASD, a precise diagnosis can be very 

difficult. ASD association with comorbid disorders (Constantino and Charman, 2016) further 

complicates it. Therefore, there is an urgent need for potential ASD biomarkers that could support 

clinical discrimination of patients. Although ASD research is progressively and actively growing, only 

two papers have characterized miRNAs in liquid biopsies from ASD patients with a high-throughput 

approach (Mundalil Vasu et al., 2014; Hicks et al., 2016); none of these studies has also focused on 

patients affected by other neurodevelopmental disorders comorbid with autism. 

We hypothesized that the serum profile of circulating miRNAs may contain some specific fingerprints 

for ASD that could also be supportive in the discrimination among it and comorbid neurodevelopmental 

disorders. Aiming to gain more knowledge about ASD biomolecular basis and identify new potential 

biomarkers for this disorder, we exploited a high-throughput approach to analyze the expression of 

circulating miRNAs in serum from ASD, TS, and TS+ASD patients. 
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Following profiling of serum miRNAs through our previously published protocol (Rizzo et al., 2015; 

Ragusa et al., 2016), we validated serum miR-140-3p as significantly upregulated in ASD patients 

compared to unaffected controls, TS patients, and TS+ASD patients. In addition, we demonstrated that 

its serum expression levels are correlated with scores from the tic scale YGTSS. Then, we observed that 

miR-140-3p network node genes are involved in biological processes convergingly dysregulated in ASD 

(i.e., synaptic plasticity, immune response, and chromatin binding). Finally, through biomarker analysis, 

we proved that serum miR-140-3p could discriminate ASD from NC, TS, and TS+ASD. 

 

3.3. Results 

3.3.1. High-throughput expression analysis of circulating miRNAs in ASD, TS, and 

TS+ASD patients 

By using TLDA technology, we investigated the expression levels of 754 miRNAs in sera from four 

ASD patients, five TS patients, four TS+ASD patients, and three unaffected NCs. We identified miR-

146a and miR-223* as the best endogenous controls for panels A and B, respectively. 

We found that four miRNAs from panel A (miR-140-3p, miR-222, miR-454, and miR-483-5p), and five 

miRNAs from panel B (miR-30d, miR-30e-3p, miR-148a*, miR-1274B, and miR-1290) were 

significantly DE (differentially expressed) in at least one of the comparisons made (FDR < 0.15 in each 

pairwise comparison). 

3.3.2. Dysregulated expression levels of miR-140-3p in serum from ASD patients 

We selected miR-30d, miR-140-3p, miR-148a*, and miR-222 for further validation through single 

TaqMan assays. MiR-146a was used as endogenous control in all the analyses carried out. 

We found only miR-140-3p as significantly dysregulated in serum from ASD patients (ordinary one-

way ANOVA, p-value = 0.0001). In particular, serum levels of miR-140-3p were higher in thirty ASD 

patients compared to twenty-five NCs (Tukey’s multiple comparisons test, multiplicity adjusted p-value 

= 0.03), twenty-four TS patients (Tukey’s multiple comparisons test, multiplicity adjusted p-value = 

0.01), and twenty-five TS+ASD patients (Tukey’s multiple comparisons test, multiplicity adjusted p-

value < 0.0001) (Figure 3.1). We did not observe any expression differences for miR-140-3p when 

comparing TS patients to NCs (Tukey’s multiple comparisons test, multiplicity adjusted p-value = 0.98), 

TS+ASD patients to NCs (Tukey’s multiple comparisons test, multiplicity adjusted p-value = 0.29), and 

TS+ASD patients to TS patients (Tukey’s multiple comparisons test, multiplicity adjusted p-value = 

0.53). 
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Figure 3. 1. MiR-140-3p is significantly dysregulated in serum of ASD patients. Single TaqMan assays 
for miR-140-3p. Box and whiskers plot depicting serum levels of miR-140-3p in ASD, TS, and TS+ASD 
patients, and NCs. Y-axis represents the distribution of -1*ΔCt values for miR-140-3p. Multiplicity 
adjusted p-values from Tukey’s multiple comparisons test and expression FC (Fold Change) values are 
shown in the boxes next to the plot. 

 

3.3.3. Correlation between miR-140-3p expression and neuropsychiatric parameters 

In order to test if any link existed between serum expression of miR-140-3p and commonly used ASD 

and TS neuropsychiatric parameters, we computed the correlation between ΔCt values for miR-140-3p 

and various neuropsychiatric scores of study participants (Table 3.1). 

 

Table 3. 1. Correlation between miR-140-3p expression and neuropsychiatric parameters. We 
performed the analyses in both a general (Section 1) and a class-specific (Sections 2-4) manner. Either 
Pearson or Spearman r values from every analysis are reported. Bonferroni corrected α = 0.05/16 = 
0.003. ASD: Autism Spectrum Disorder; TS: Tourette syndrome; NC: Unaffected Control; IQ: 
Intelligence Quotient; ADOS: Autism Diagnostic Observation Schedule; YGTSS: Yale Global Tic 
Severity Scale; 95% CI: 95% Confidence Interval; NT: Not Tested; FDR: False Discovery Rate. 

1. All patients and NCs 

 ∆Ct 
vs. 
IQ 

∆Ct 
vs. 

YGTSS 

∆Ct 
vs. 

ADOS 
Commu- 
nication 

∆Ct 
vs. 

ADOS 
Social 

interaction 

∆Ct 
vs. 

ADOS 
Imagination 

∆Ct 
vs. 

ADOS 
Repetitive and 

restricted 
behaviors 

Spearman r 0.02 0.33 -0.13 -0.07 -0.17 NT 
Pearson r NT NT NT NT NT -0.17 

95% CI -0.18 - 
0.21 

0.15 - 
0.50 -0.32 - 0.07 -0.27 - 

0.12 
-0.36 - 
0.03 -0.35 - 0.02 

two-sided p-value 0.86 0.0005 0.18 0.45 0.09 0.08 
Is p < Bonferroni N Y N N N N 
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corrected α? 
Bonferroni-Holm 
adjusted p-value 1.00 0.008 1.00 1.00 1.00 1.00 

Benjamini-
Hochberg p-value 

(FDR 1%) 
0.86 0.008 0.29 0.51 0.23 0.23 

Number of XY 
Pairs 104 104 104 104 104 104 

2. ASD patients and NCs 

 
∆Ct 
vs. 

ADOS 
Commu- 
nication 

∆Ct 
vs. 

ADOS 
Social 

interaction 

∆Ct 
vs. 

ADOS 
Imagination 

∆Ct 
vs. 

ADOS 
Repetitive 

and 
restricted 
behaviors 

  

Spearman r -0.27 -0.20 -0.31 NT   
Pearson r NT NT NT -0.29   

95% CI -0.51 - 
0.003 

-0.45 - 
0.08 

-0.53- 
-0.04 

-0.51- 
-0.02 

  

two-sided p-value 0.05 0.15 0.02 0.03   
Is p < Bonferroni 

corrected α? N N N N   
Bonferroni-Holm 
adjusted p-value 0.60 1.00 0.34 0.47   

Benjamini-
Hochberg p-value 

(FDR 1%) 
0.18 0.29 0.18 0.18   

Number of XY 
Pairs 55 55 55 55   

3. TS patients and NCs 

 ∆Ct 
vs. 

YGTSS 
     

Spearman r -0.03      

95% CI -0.31 - 
0.26 

     

two-sided p-value 0.84      
Is p < Bonferroni 

corrected α? N      

Bonferroni-Holm 
adjusted p-value 1.00      

Benjamini-
Hochberg p-value 

(FDR 1%) 
0.86      

Number of XY 
Pairs 49      

4. TS+ASD patients and NCs 

 ∆Ct 
vs. 

YGTSS 

∆Ct 
vs. 

ADOS 
Commu-
nication 

∆Ct 
vs. 

ADOS 
Social 

interaction 

∆Ct 
vs. 

ADOS 
Imagination 

∆Ct 
vs. 

ADOS 
Repetitive 

and 
restricted 
behaviors 

 

Spearman r 0.21 0.17 0.15 0.17 0.20  

95% CI -0.08 - 
0.47 

-0.12 - 
0.43 -0.14 - 0.42 -0.12 - 

0.44 
-0.09 - 
0.46 

 

two-sided p-value 0.14 0.24 0.28 0.23 0.17  
Is p < Bonferroni 

corrected α? N N N N N  
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Bonferroni-Holm 
adjusted p-value 1.00 1.00 1.00 1.00 1.00  

Benjamini-
Hochberg p-value 

(FDR 1%) 
0.29 0.33 0.35 0.33 0.29  

Number of XY 
Pairs 50 50 50 50 50  

 

When we included all patients and controls in our analysis, we found a positive correlation (Spearman 

r = 0.33; two-sided p-value = 0.0005, significant according to Bonferroni correction; Holm-Bonferroni 

corrected p-value = 0.008; BH FDR adjusted p-value = 0.008) and a linear relationship (y = 4.537x - 

3.269, y: YGTSS score, x: ΔCt value for miR-140-3p, two-sided p-value = 0.002) between miR-140-3p 

expression levels and YGTSS scores (Figure 3.2). We could assume that lower serum levels of miR-

140-3p, which have been observed in TS+ASD patients, are potentially associated with both occurrence 

and worsening of motor and phonic tics and that higher serum levels of miR-140-3p, which we found 

in ASD patients, could be linked to the absence of tics.  

 

Figure 3. 2. Correlation between serum levels of miR-140-3p and scores from YGTSS scale. The 
scatterplot refers to all the 104 analyzed samples and it also reports the best-fit line obtained from linear 
regression analysis. YGTSS: Yale Global Tic Severity Scale; 95% CI: 95% Confidence Interval. 

 

This analysis confirmed that serum expression of miR-140-3p correlated with a crucial neuropsychiatric 

scale for the clinical diagnosis of TS. We infer that miR-140-3p could prove to be useful to strengthen 

the behavior-based diagnosis of either ASD or TS+ASD, which can be particularly challenging in some 

clinical cases. 
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3.3.4. Reconstruction of miR-140-3p-mediated regulatory network: functional and 

expression analyses of network node genes 

By searching on online databases of miRNA-mRNA interactions for validated targets of miR-140-3p, 

we retrieved CD38 and NRIP1 as its only targets whose validation was based on strong evidence. 

Through network analysis, we reconstructed the regulatory network composed of MIR140 (microRNA 

140, the gene encoding miR-140-3p), CD38, NRIP1, and their first neighbors. This network had 111 

nodes and 821 edges. NRIP1, POLR2A (RNA polymerase II subunit A), EP300 (E1A binding protein 

p300), E2F1 (E2F transcription factor 1), ESR1 (estrogen receptor 1), PHF8 (PHD finger protein 8), and 

TAF1 (TATA-box binding protein associated factor 1) were the nodes with the highest degree within it 

(Figure S3.1).  

In order to investigate the potential etiological role of this miRNA-mediated network in ASD, we 

performed functional enrichment analysis of network node genes using GO (Gene Ontology), DO 

(Disease Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes), and Reactome gene 

annotation databases (Figure S3.2-4). 

Genes from miR-140-3p-mediated regulatory network played a role in various mechanisms within the 

nervous system (i.e., neurogenesis, regulation of synaptic plasticity, long-term synaptic depression, 

cellular response to nerve growth factor, neuron differentiation, dendrite development, and neuronal 

death). In addition to their role in nervous system development, they were also involved in growth 

regulation, endocrine system development, heart development, respiratory system development, and 

tongue development (Table 3.2, Figure S3.5).  

 

Table 3. 2. Over-represented GO Biological Process terms regarding nervous system and development 
in miR-140-3p-mediated regulatory network. Term database ID, term description, corresponding BH 
adjusted p-value generated by the hypergeometric test, Gene Ratio, and Background Ratio values are 
reported for all the GO Biological Process terms regarding nervous system and development. Gene 
Ratio: the ratio of number of genes of interest that are annotated with a certain term from the database 
used to perform the analysis to number of genes of interest that are annotated with terms from the same 
database. Background Ratio: the ratio of number of genes in the genome that are annotated with a 
certain term from the database used to perform the analysis to number of genome genes that are 
annotated with terms from the same database. GO: Gene Ontology; BP: Biological Process; BH: 
Benjamini-Hochberg. 

GO BP 
term ID GO BP term description BH adjusted 

p-value 
Gene 
Ratio 

Background 
Ratio 

GO:0061029 eyelid development in camera-
type eye 2.31E-05 0.0482 0.0008 

GO:1990090 cellular response to nerve growth 
factor stimulus 3.64E-05 0.0602 0.0021 

GO:1990089 response to nerve growth factor 4.88E-05 0.0602 0.0023 

GO:0048608 reproductive structure 
development 0.00015 0.1325 0.0244 
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GO:0061458 reproductive system development 0.00016 0.1325 0.0246 
GO:0016049 cell growth 0.00048 0.1325 0.0289 
GO:0048732 gland development 0.00061 0.1205 0.0244 
GO:0001654 eye development 0.00066 0.1084 0.0197 

GO:0051961 negative regulation of nervous 
system development 0.00068 0.0964 0.0152 

GO:0048714 positive regulation of 
oligodendrocyte differentiation 0.00089 0.0361 0.0009 

GO:0008584 male gonad development 0.00089 0.0723 0.0080 

GO:0046546 development of primary male 
sexual characteristics 0.00089 0.0723 0.0080 

GO:0008406 gonad development 0.0012 0.0843 0.0125 
GO:0030850 prostate gland development 0.0012 0.0482 0.0028 
GO:0070997 neuron death 0.0012 0.0964 0.0169 
GO:0043010 camera-type eye development 0.0013 0.0964 0.0171 

GO:0045137 development of primary sexual 
characteristics 0.0013 0.0843 0.0128 

GO:0001558 regulation of cell growth 0.0016 0.1084 0.0229 
GO:0061448 connective tissue development 0.0020 0.0843 0.0139 
GO:0030308 negative regulation of cell growth 0.0020 0.0723 0.0098 
GO:0007507 heart development 0.0021 0.1205 0.0296 

GO:0050768 negative regulation of 
neurogenesis 0.0021 0.0843 0.0141 

GO:1901215 negative regulation of neuron 
death 0.0024 0.0723 0.0102 

GO:2000171 negative regulation of dendrite 
development 0.0028 0.0361 0.0015 

GO:0045665 negative regulation of neuron 
differentiation 0.0033 0.0723 0.0111 

GO:0061196 fungiform papilla development 0.0035 0.0241 0.0004 
GO:0001893 maternal placenta development 0.0037 0.0361 0.0017 

GO:0048713 regulation of oligodendrocyte 
differentiation 0.0037 0.0361 0.0017 

GO:0010721 negative regulation of cell 
development 0.0037 0.0843 0.0163 

GO:0060541 respiratory system development 0.0041 0.0723 0.0118 
GO:0048709 oligodendrocyte differentiation 0.0053 0.0482 0.0047 
GO:0035265 organ growth 0.0054 0.0602 0.0084 
GO:0060534 trachea cartilage development 0.0054 0.0241 0.0005 
GO:0007423 sensory organ development 0.0063 0.1084 0.0298 
GO:0045926 negative regulation of growth 0.0069 0.0723 0.0136 
GO:0060433 bronchus development 0.0088 0.0241 0.0007 

GO:0060525 prostate glandular acinus 
development 0.0088 0.0241 0.0007 

GO:1901214 regulation of neuron death 0.0098 0.0723 0.0150 
GO:0060736 prostate gland growth 0.0098 0.0241 0.0007 

GO:0060742 
epithelial cell differentiation 
involved in prostate gland 

development 
0.0098 0.0241 0.0007 

GO:0030323 respiratory tube development 0.011 0.0602 0.0104 
GO:0060348 bone development 0.011 0.0602 0.0105 
GO:0051216 cartilage development 0.012 0.0602 0.0108 

GO:0003417 growth plate cartilage 
development 0.012 0.0241 0.0008 

GO:0001501 skeletal system development 0.015 0.0964 0.0290 
GO:0035855 megakaryocyte development 0.015 0.0241 0.0010 
GO:0071696 ectodermal placode development 0.015 0.0241 0.0010 
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GO:0048638 regulation of developmental 
growth 0.016 0.0723 0.0173 

GO:0010977 negative regulation of neuron 
projection development 0.016 0.0482 0.0073 

GO:0060749 mammary gland alveolus 
development 0.017 0.0241 0.0011 

GO:0061377 mammary gland lobule 
development 0.017 0.0241 0.0011 

GO:0071560 cellular response to transforming 
growth factor beta stimulus 0.018 0.0602 0.0124 

GO:0035270 endocrine system development 0.018 0.0482 0.0077 

GO:0071559 response to transforming growth 
factor beta 0.018 0.0602 0.0125 

GO:0060438 trachea development 0.018 0.0241 0.0011 

GO:0061180 mammary gland epithelium 
development 0.018 0.0361 0.0038 

GO:0003416 endochondral bone growth 0.020 0.0241 0.0012 
GO:0043586 tongue development 0.020 0.0241 0.0012 
GO:0048167 regulation of synaptic plasticity 0.021 0.0482 0.0081 
GO:0030325 adrenal gland development 0.021 0.0241 0.0013 
GO:0001890 placenta development 0.022 0.0482 0.0083 
GO:0035264 multicellular organism growth 0.022 0.0482 0.0083 

GO:0060351 cartilage development involved in 
endochondral bone morphogenesis 0.023 0.0241 0.0013 

GO:0098868 bone growth 0.023 0.0241 0.0013 
GO:0060292 long term synaptic depression 0.024 0.0241 0.0014 

GO:0010720 positive regulation of cell 
development 0.025 0.0843 0.0262 

GO:0007176 regulation of epidermal growth 
factor-activated receptor activity 0.027 0.0241 0.0015 

GO:0030878 thyroid gland development 0.027 0.0241 0.0015 
GO:0060537 muscle tissue development 0.029 0.0723 0.0206 
GO:0030900 forebrain development 0.030 0.0723 0.0209 
GO:0048736 appendage development 0.036 0.0482 0.0101 
GO:0060173 limb development 0.036 0.0482 0.0101 
GO:0030324 lung development 0.037 0.0482 0.0102 
GO:0008585 female gonad development 0.037 0.0361 0.0055 

GO:0050769 positive regulation of 
neurogenesis 0.038 0.0723 0.0225 

GO:0045684 positive regulation of epidermis 
development 0.038 0.0241 0.0019 

GO:0060612 adipose tissue development 0.038 0.0241 0.0019 
GO:0098751 bone cell development 0.038 0.0241 0.0019 

GO:0046545 development of primary female 
sexual characteristics 0.040 0.0361 0.0057 

GO:0048738 cardiac muscle tissue development 0.042 0.0482 0.0108 
GO:0021761 limbic system development 0.042 0.0361 0.0058 

GO:0031076 embryonic camera-type eye 
development 0.043 0.0241 0.0021 

GO:0016358 dendrite development 0.047 0.0482 0.0113 
 

MIR140 gene was annotated with the over-represented DO term physical disorder, that refers to diseases 

determined by a genetic abnormality, error with embryonic development, infection or compromised 

intrauterine environment (DOID:0080015; BH adjusted p-value = 0.027; Gene Ratio = 0.070; 
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Background Ratio = 0.017). Among the most interesting terms whose enrichment was determined by 

CD38, we found those regarding response to estradiol, retinoic acid, drugs, hypoxia, ketone, and 

oxidative stress, activation and proliferation of immune cells, regulation of protein localization, cellular 

calcium ion homeostasis, and blood circulation. We found bacterial infectious disease as the only DO 

term. Finally, CD38 was directly involved in the regulation of synaptic plasticity and long-term synaptic 

depression (Table 3.3, Figure S3.6).  

 

Table 3. 3. Over-represented GO, DO, and KEGG terms associated with CD38 in miR-140-3p-
mediated regulatory network.  Term database ID, term description, corresponding BH adjusted p-value 
generated by the hypergeometric test, Gene Ratio, and Background Ratio values are reported for all the 
over-represented terms with which CD38 is annotated. For in-depth description of the column names 
see Table 3.2 legend. GO: Gene Ontology; BP: Biological Process; DO: Disease Ontology; KEGG: 
Kyoto Encyclopedia of Genes and Genomes; BH: Benjamini-Hochberg. 

Annotation 
Database Term ID Term description BH adjusted 

p-value 
Gene 
Ratio 

Background 
Ratio 

GO BP GO:0048545 response to steroid hormone 2.94E-35 0.4337 0.0221 
GO BP GO:0032355 response to estradiol 5.13E-08 0.1205 0.0070 
GO BP GO:0070482 response to oxygen levels 4.53E-07 0.1566 0.0181 
KEGG hsa05169 Epstein-Barr virus infection 3.36E-06 0.1884 0.0283 
GO BP GO:0001101 response to acid chemical 7.61E-06 0.1325 0.0158 
GO BP GO:0042493 response to drug 7.61E-06 0.1566 0.0238 

GO BP GO:0002764 immune response-regulating 
signaling pathway 3.86E-05 0.1566 0.0294 

GO BP GO:0051251 positive regulation of lymphocyte 
activation 4.72E-05 0.1205 0.0166 

GO BP GO:0036293 response to decreased oxygen levels 5.76E-05 0.1205 0.0171 

GO BP GO:0002768 immune response-regulating cell 
surface receptor signaling pathway 6.41E-05 0.1325 0.0217 

GO BP GO:0002694 regulation of leukocyte activation 7.86E-05 0.1446 0.0269 

GO BP GO:0002696 positive regulation of leukocyte 
activation 8.41E-05 0.1205 0.0180 

GO BP GO:0002757 immune response-activating signal 
transduction 8.67E-05 0.1446 0.0274 

GO BP GO:0050867 positive regulation of cell activation 9.75E-05 0.1205 0.0185 
GO BP GO:0051249 regulation of lymphocyte activation 0.00012 0.1325 0.0238 
GO BP GO:0050865 regulation of cell activation 0.00013 0.1446 0.0289 

GO BP GO:0002429 immune response-activating cell 
surface receptor signaling pathway 0.00015 0.1205 0.0197 

GO BP GO:0001666 response to hypoxia 0.00025 0.1084 0.0166 
GO BP GO:0032526 response to retinoic acid 0.00028 0.0723 0.0061 
GO BP GO:0016049 cell growth 0.00048 0.1325 0.0289 
GO BP GO:0007565 female pregnancy 0.00055 0.0843 0.0107 

GO BP GO:0044706 multi-multicellular organism 
process 0.0010 0.0843 0.0121 

GO BP GO:0050708 regulation of protein secretion 0.0015 0.1084 0.0226 
GO BP GO:0001558 regulation of cell growth 0.0016 0.1084 0.0229 
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GO BP GO:0050851 antigen receptor-mediated signaling 
pathway 0.0017 0.0843 0.0134 

GO BP GO:0032844 regulation of homeostatic process 0.0032 0.1084 0.0260 

GO BP GO:0050670 regulation of lymphocyte 
proliferation 0.0033 0.0723 0.0111 

GO BP GO:0032944 regulation of mononuclear cell 
proliferation 0.0034 0.0723 0.0112 

GO BP GO:0070663 regulation of leukocyte proliferation 0.0039 0.0723 0.0117 
GO BP GO:0009306 protein secretion 0.0042 0.1084 0.0276 

GO BP GO:1904951 positive regulation of establishment 
of protein localization 0.0063 0.1084 0.0299 

GO BP GO:0046651 lymphocyte proliferation 0.0094 0.0723 0.0148 
GO BP GO:0032943 mononuclear cell proliferation 0.0097 0.0723 0.0149 
GO BP GO:0050796 regulation of insulin secretion 0.0098 0.0602 0.0101 
GO BP GO:0070661 leukocyte proliferation 0.012 0.0723 0.0158 
GO BP GO:0010817 regulation of hormone levels 0.012 0.0964 0.0276 
GO BP GO:0006979 response to oxidative stress 0.014 0.0843 0.0226 

GO BP GO:0090276 regulation of peptide hormone 
secretion 0.015 0.0602 0.0116 

GO BP GO:0030073 insulin secretion 0.015 0.0602 0.0118 
GO BP GO:0044057 regulation of system process 0.016 0.0964 0.0295 
GO BP GO:0002791 regulation of peptide secretion 0.016 0.0602 0.0119 
GO BP GO:0090087 regulation of peptide transport 0.016 0.0602 0.0121 

GO BP GO:0050671 positive regulation of lymphocyte 
proliferation 0.017 0.0482 0.0074 

GO BP GO:0032946 positive regulation of mononuclear 
cell proliferation 0.017 0.0482 0.0075 

GO BP GO:0050853 B cell receptor signaling pathway 0.018 0.0361 0.0038 

GO BP GO:0070665 positive regulation of leukocyte 
proliferation 0.019 0.0482 0.0079 

GO BP GO:0048167 regulation of synaptic plasticity 0.021 0.0482 0.0081 
DO DOID:104 bacterial infectious disease 0.022 0.1047 0.0338 

GO BP GO:0060292 long term synaptic depression 0.024 0.0241 0.0014 
GO BP GO:0030072 peptide hormone secretion 0.026 0.0602 0.0140 
GO BP GO:0042113 B cell activation 0.027 0.0602 0.0142 

DO DOID:0050338 primary bacterial infectious disease 0.027 0.0930 0.0297 
GO BP GO:0002790 peptide secretion 0.028 0.0602 0.0145 
GO BP GO:0046883 regulation of hormone secretion 0.030 0.0602 0.0148 
GO BP GO:1901654 response to ketone 0.032 0.0482 0.0097 
GO BP GO:0015833 peptide transport 0.033 0.0602 0.0154 
GO BP GO:0006874 cellular calcium ion homeostasis 0.037 0.0723 0.0222 
GO BP GO:0008015 blood circulation 0.037 0.0843 0.0290 
GO BP GO:0003013 circulatory system process 0.038 0.0843 0.0293 
GO BP GO:0055074 calcium ion homeostasis 0.041 0.0723 0.0230 
GO BP GO:0042886 amide transport 0.041 0.0602 0.0166 

GO BP GO:0072503 cellular divalent inorganic cation 
homeostasis 0.046 0.0723 0.0237 

GO BP GO:0046879 hormone secretion 0.047 0.0602 0.0173 
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Among the most interesting terms whose enrichment was determined by NRIP1, there were those related 

to response to estradiol and steroid hormones, reproductive system development, and development of 

primary sexual characteristics. NRIP1 was annotated with many molecular functions (i.e., histone 

deacetylase binding, nuclear hormone receptor binding, core promoter sequence-specific DNA binding, 

retinoic acid receptor binding, and retinoid X receptor binding). Finally, NRIP1 regulated the 

transcription of genes involved in circadian rhythm by interacting with RORA (RAR related orphan 

receptor A) (Table 3.4, Figure S3.7). 

 

Table 3. 4. Over-represented GO, DO, and Reactome terms associated with NRIP1 in miR-140-3p-
mediated regulatory network.  Term database ID, term description, corresponding BH adjusted p-value 
generated by the hypergeometric test, Gene Ratio, and Background Ratio values are reported for all the 
over-represented terms with which NRIP1 is annotated. For in-depth description of the column names 
see Table 3.2 legend. GO: Gene Ontology; BP: Biological Process; MF: Molecular Function; CC: 
Cellular Component; DO: Disease Ontology; BH: Benjamini-Hochberg. 

Annotation 
Database Term ID Term description 

BH 
adjusted 
p-value 

Gene 
Ratio 

Background 
Ratio 

GO BP GO:0043401 steroid hormone mediated signaling 
pathway 8.14E-41 0.398 0.011 

GO BP GO:0071383 cellular response to steroid hormone 
stimulus 1.44E-40 0.422 0.014 

GO BP GO:0030522 intracellular receptor signaling 
pathway 1.44E-40 0.434 0.016 

GO BP GO:0009755 hormone-mediated signaling 
pathway 1.45E-38 0.398 0.013 

GO BP GO:0048545 response to steroid hormone 2.94E-35 0.434 0.022 
GO BP GO:0071396 cellular response to lipid 9.41E-34 0.458 0.029 

GO BP GO:0071407 cellular response to organic cyclic 
compound 1.55E-33 0.458 0.030 

GO MF GO:0008134 transcription factor binding 4.77E-24 0.373 0.031 
GO MF GO:0003713 transcription coactivator activity 1.56E-14 0.229 0.018 
GO MF GO:0035257 nuclear hormone receptor binding 3.23E-12 0.157 0.008 

GO BP GO:0030518 intracellular steroid hormone 
receptor signaling pathway 9.27E-12 0.157 0.007 

GO MF GO:0051427 hormone receptor binding 2.09E-11 0.157 0.009 
GO CC GO:0000790 nuclear chromatin 1.09E-10 0.190 0.017 
GO CC GO:0044454 nuclear chromosome part 1.16E-10 0.226 0.028 
GO CC GO:0000785 chromatin 1.61E-10 0.214 0.025 
GO MF GO:0001047 core promoter binding 6.28E-10 0.145 0.010 
GO MF GO:0035258 steroid hormone receptor binding 4.19E-09 0.108 0.005 
GO BP GO:0048511 rhythmic process 6.87E-09 0.181 0.019 
GO BP GO:0007623 circadian rhythm 3.12E-08 0.145 0.011 
GO BP GO:0032355 response to estradiol 5.13E-08 0.120 0.007 
GO MF GO:0042826 histone deacetylase binding 5.96E-08 0.108 0.006 

GO MF GO:0001046 core promoter sequence-specific 
DNA binding 7.31E-07 0.096 0.006 
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GO MF GO:0042974 retinoic acid receptor binding 1.63E-06 0.060 0.001 
GO MF GO:0003714 transcription corepressor activity 2.20E-06 0.120 0.013 
GO MF GO:0046965 retinoid X receptor binding 8.63E-06 0.048 0.001 

GO BP GO:0032922 circadian regulation of gene 
expression 2.31E-05 0.072 0.003 

GO BP GO:0030521 androgen receptor signaling 
pathway 3.24E-05 0.072 0.004 

GO BP GO:0048608 reproductive structure development 0.00015 0.133 0.024 
GO MF GO:0035259 glucocorticoid receptor binding 0.00016 0.036 0.001 
GO BP GO:0061458 reproductive system development 0.00016 0.133 0.025 
GO CC GO:0000118 histone deacetylase complex 0.00019 0.060 0.003 
GO MF GO:0030331 estrogen receptor binding 0.00024 0.048 0.002 
GO MF GO:0050681 androgen receptor binding 0.00033 0.048 0.002 
GO BP GO:0019915 lipid storage 0.00035 0.060 0.004 
GO BP GO:0051235 maintenance of location 0.00035 0.108 0.018 
GO BP GO:0007548 sex differentiation 0.00084 0.096 0.016 

Reactome 400253 Circadian Clock 0.00091 0.069 0.005 
GO BP GO:0008406 gonad development 0.0012 0.084 0.012 

GO BP GO:0045137 development of primary sexual 
characteristics 0.0013 0.084 0.013 

Reactome 1368082 RORA activates gene expression 0.0018 0.042 0.001 
DO DOID:3308 embryonal carcinoma 0.0028 0.047 0.003 

GO BP GO:0071392 cellular response to estradiol 
stimulus 0.0040 0.036 0.002 

GO BP GO:0010876 lipid localization 0.011 0.084 0.021 
DO DOID:11612 polycystic ovary syndrome 0.020 0.081 0.021 
DO DOID:688 embryonal cancer 0.020 0.128 0.047 
DO DOID:2994 germ cell cancer 0.029 0.128 0.051 

GO BP GO:0022602 ovulation cycle process 0.030 0.036 0.005 
GO BP GO:0008585 female gonad development 0.037 0.036 0.005 

GO BP GO:0046545 development of primary female 
sexual characteristics 0.040 0.036 0.006 

GO BP GO:0042698 ovulation cycle 0.048 0.036 0.006 
 

To verify if dysregulation of network node genes was implicated in ASD, we used publicly available 

raw high-throughput gene expression datasets produced from the analysis of ASD samples. Ten genes 

were found to be downregulated in whole blood of ASD patients compared to NCs (log2FC, Fold Change 

< -1): CCDC85B (coiled-coil domain containing 85B), CD3E (CD3e molecule), CIB1 (calcium and 

integrin binding 1), CTBP1 (C-terminal binding protein 1), LCK (LCK proto-oncogene, Src family 

tyrosine kinase), MAP3K7 (mitogen-activated protein kinase kinase kinase 7), NR1H2 (nuclear receptor 

subfamily 1 group H member 2), RARA (retinoic acid receptor alpha), STAT3 (signal transducer and 

activator of transcription 3), and ZAP70 (zeta chain of T cell receptor associated protein kinase 70); two 

were found to be overexpressed (log2FC > 1): PHF8 and TAF1 (Figure 3.3). 
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Figure 3. 3. Expression analysis of node genes within miR-140-3p-mediated regulatory network in 
human ASD high-throughput gene expression datasets retrieved from GEO DataSets and 
ArrayExpress. Datasets used for the expression analysis (human ASD source tissue, dataset ID, 
platform type, statistical test performed) and microarray probe IDs along with their corresponding gene 
symbols are reported in columns and rows of this gene expression heatmap, respectively. Colored 
heatmap cells represent genes that are DE in a certain dataset. Data are shown as log2FC expression 
values. For more information about gene expression trend, see figure legend. 
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3.3.5. Serum levels of miR-140-3p in the discrimination of ASD patients 

We used ΔCt values for miR-140-3p to perform a classical univariate ROC (Receiver Operator 

Characteristic) curve analysis for each of the comparisons where we found this miRNA to be 

dysregulated. The univariate ROC plots revealed an AUC of 0.71 for the comparison ASD vs NC (p-

value = 0.006), 0.73 for ASD vs TS (p-value = 0.002), and 0.78 for ASD vs TS+ASD (p-value = 

0.00007) (Figure 3.4).  

 

Figure 3. 4. Classical univariate ROC curve analyses for the comparisons in which miR-140-3p is 
dysregulated. This graph compares three ROC curves, one for each comparison where we found miR-
140-3p to be dysregulated. Each point on the ROC curves represents a sensitivity/specificity pair 
corresponding to a particular decision threshold (ΔCt value cut-off). Circles on the curves refer to the 
sensitivity/specificity pairs with the highest Youden index J. AUC: Area under the ROC curve; 95% CI: 
95% Confidence Interval. 

 

We used ∆Ct value cut-offs corresponding to the sensitivity/specificity pair with the highest Youden 

index J for every computed ROC curve to perform a blind diagnosis on all the 104 analyzed samples 

(Figure 3.5). 
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Figure 3. 5. The potential use of serum miR-140-3p as a biomarker: criteria for ASD diagnosis. The 
graphs show the distribution of ∆Ct values of all the 104 analyzed samples, for which we already had a 
clinical diagnosis. We used data from classical univariate ROC curve analyses to perform a blind 
diagnosis of all study participants. In panel (A), the ∆Ct ≤ 2.427 criterion divides ASD patients from 
NCs and determines the correct discrimination of 19/32 ASD patients and 20/25 NCs. In panel (B), the 
∆Ct ≤ 2.447 criterion divides ASD patients from TS patients and determines the correct discrimination 
of 19/32 ASD patients and 19/24 TS patients. In panel (C), the ∆Ct ≤ 2.824 criterion separates ASD 
patients from TS+ASD patients and determines the correct discrimination of 22/32 ASD patients and 
19/25 TS+ASD patients. 
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Then, we built a logistic regression model for miR-140-3p expression in each comparison and we tested 

those predictive models through CV (cross-validation) and permutation testing. 100-time repeated 

random sub-sampling CV was used to test the performance of the logistic regression models. MiR-140-

3p continued to perform at a good level for the comparison ASD vs NC, with an average AUC of 0.70, 

a sensitivity of 63.33%, and a specificity of 68% (Figure 3.6.1C-D). MiR-140-3p continued to perform 

at a good level also for the comparison ASD vs TS, with an average AUC of 0.72, a sensitivity of 

66.66%, and a specificity of 70.83% (Figure 3.6.2C-D). MiR-140-3p continued to perform at a very 

high level for the comparison ASD vs TS+ASD, with an average AUC of 0.78, a sensitivity of 73.33%, 

and a specificity of 76% (Figure 3.6.3C-D). CV results demonstrated the general applicability of these 

predictive models. 100-time repeated permutation tests on the performance measure AUC were carried 

out to validate the structure of these models. Permutation testing results were significant and quite stable 

in different runs for all the models tested (Figure 3.6.1E, .2E, and .3E).  
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Figure 3. 6. Serum miR-140-3p could be used to discriminate ASD patients. (1) The graphs refer to 
the comparison ASD vs NC. (2) The graphs refer to the comparison ASD vs TS. (3) The graphs refer to 
the comparison ASD vs TS+ASD. (A) Classical univariate ROC curve analysis. The red dot represents 
the sensitivity/specificity pair with the highest Youden index J. (B) Boxplot depicting the distribution of 
∆Ct values in the two groups. The red line represents the ΔCt value cut-off corresponding to the red dot 
on the curve in (A). The label 1 refers to the ASD group, 0 to the other group. (C) Average ROC curve 



Chapter 3 

50 
 

from 100-time repeated random sub-sampling CV of the built logistic regression model. (D) Average 
predicted class probabilities (x-axis) of each sample (y-axis) from the 100 CV iterations. Probability 
scores more than 0.5 belong to the ASD group, those less than 0.5 belong to the other group. Incorrectly 
classified subjects are identified by their ID number. (E) Results from the permutation tests on the model 
performance measure AUC. Average ROC curve and corresponding p-value are reported. AUC: Area 
under the ROC curve; 95% CI: 95% Confidence Interval. 

 

These data proved that serum miR-140-3p could be used in the discrimination of ASD patients. In 

particular, it could potentially support the differential behavior-based diagnostic process of two classes 

of neurodevelopmental disorders, ASD and TS+ASD. 

3.4. Discussion 

Many factors, including disorders that are comorbid with ASD, like TS, complicate ASD behavior-

based diagnosis and make it vulnerable to bias. Stability, general consistency of expression among 

individuals, and condition-specific expression profile make circulating miRNAs appropriate non-

invasive diagnostic biomarkers (Weiland et al., 2012; Larrea et al., 2016). We hypothesized that serum 

profile of circulating miRNAs may contain specific fingerprints for ASD: these could provide some 

hints to the molecular basis of ASD and be used as supportive means to the clinical diagnostic process, 

especially in the discrimination among neurodevelopmental disorders.  

Using TLDA technology, we profiled serum expression of 754 human miRNAs in a discovery set of 

samples, including four ASD, five TS, and four TS+ASD patients and three NCs. The undeniable limit 

of this profiling approach is that, despite analyzing a total number of 16 samples in this exploratory step, 

we could have missed some significantly dysregulated circulating miRNAs because of the small number 

of samples in each compared group. However, we also applied very strict selection criteria for the 

identification of those 9 miRNAs (miR-30d, miR-30e-3p, miR-140-3p, miR-148a*, miR-222, miR-454, 

miR-483-5p, miR-1274B, and miR-1290) as differentially expressed, in order to spot more robust 

findings, likely to be confirmed in the next validation step. Nevertheless, through single TaqMan assays 

we observed the dysregulation of just one (miR-140-3p) of the four miRNAs selected for validation 

(miR-30d, miR-140-3p, miR-148a*, and miR-222) even if, according to results from profiling, those 

showed the most interesting and marked expression trends. This could be explained by the fact that 

TLDA approach is still a high-throughput one: the preliminary step of preamplification suggested for 

TLDA analysis may have inserted an amplification bias, leading to not very accurate results. Knowing 

how crucial validation is, we have also performed this step by TaqMan assay, a probe-based system that 

is designed to specifically detect the expression of miRNAs of interests. 

There is no consensus about optimal normalization strategies and accurate reference genes for both 

intracellular and extracellular miRNAs (Schwarzenbach et al., 2015). Suggested endogenous controls 
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for miRNAs differ depending on: (1) the species considered; (2) either the tissue or body fluid analyzed; 

(3) either the physiological or pathological condition investigated; (4) different sample preparation 

methods, especially for circulating miRNAs (Marabita et al., 2016). On one hand, researchers can select 

reference miRNA genes according to reports from similar studies in the literature, and then, validate 

them for the set of samples under analysis (Schwarzenbach et al., 2015). On the other, they can screen 

the specific samples for more suitable endogenous controls through the profiling of a large number of 

genes. In this case, it is suggested to use either the mean expression values of all the profiled miRNAs 

in each of the samples or genes with expression levels similar to these values as the screened endogenous 

controls (Schwarzenbach et al., 2015; Marabita et al., 2016). At the moment, accurately described 

normalization approaches and validated reference genes for serum miRNAs in ASD patients lack: this, 

together with different ethnicity of participants and other potential diverse analytic variables in studies 

similar to ours, led us to prefer our customized normalization approach over reference gene selection 

from literature. This approach, which is inspired to the recommended miRNA array normalization 

strategy reported above (Schwarzenbach et al., 2015; Marabita et al., 2016), has proved its value in other 

works on neurological disorders published by our group (Rizzo et al., 2015; Ragusa et al., 2016). Thanks 

to it, we have selected miR-146a and miR-223* as the most appropriate and accurate reference genes 

for our system. Some studies have identified miR-146a as either dysregulated in human ASD tissues 

(Mor et al., 2015; Nguyen et al., 2016) or associated to inflammation and immune response observed in 

neurodegenerative and neurological disorders (Iyer et al., 2012; Kiko et al., 2014; Müller et al., 2014; 

Wang et al., 2015; An et al., 2016; Romano et al., 2017): however, this neither discourages its use as 

reference miRNA in our dataset nor affects the applicability of our results from differential expression 

analysis. 

Through our expression analysis, we have identified miR-140-3p as dysregulated in serum from ASD 

patients. It is upregulated in ASD patients compared to NCs, TS patients, and TS+ASD patients: its 

levels are the highest in the ASD group (Figure 3.1). We observed that miR-140-3p levels are the lowest 

in the TS+ASD group. It is interesting that the two groups ASD and TS+ASD showed such a different 

expression trend for this miRNA. It is likely that the lower miR-140-3p expression reflects the presence 

of phonic and motor tics due to the comorbidity of TS with ASD. It may also depend on other either 

physiological conditions or comorbidities: this needs to be further investigated. On the contrary, 

according to our previous study on TS (Rizzo et al., 2015), we expected not to find any difference in 

miR-140-3p expression between TS patients and NCs. 

According to expression data from the Human miRNA Tissue Atlas (Ludwig et al., 2016), miR-140-3p 

is highly expressed in bone, nerves, arteries, meninges (arachnoid mater and dura mater), muscle, and 

adipose tissue. Published data also confirm that miR-140-3p is one of the top highly expressed miRNAs 

in the human brain cortex (Shao et al., 2010) and that it is not specific for any of the different human 
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blood cell compounds (Leidinger et al., 2014). The intracellular roles exerted by miR-140-3p have been 

mainly investigated in human pathologies, such as cancer (Lionetti et al., 2009; Tan et al., 2011; Miles 

et al., 2012; Piepoli et al., 2012; Sand, Skrygan, Georgas et al., 2012; Sand, Skrygan, Sand et al., 2012; 

Serrano et al., 2012; Bayrak et al., 2013; Yuan et al., 2014; Zou et al., 2014; Kong et al., 2015; 

Reddemann et al., 2015; Chang et al., 2016; Dong et al., 2016; Gulluoglu et al., 2016; Salem et al., 2016; 

Zhu et al., 2016), asthma (Jude et al., 2012; Dileepan et al., 2016), osteoarthritis (Rasheed et al., 2017), 

and rheumatoid arthritis (Peng, Chen, et al., 2016). Studies on mouse and rat models have also proved 

its involvement in spermatogenesis (Lou et al., 2015) and testis differentiation (Rakoczy et al., 2013), 

chondrogenesis and growth (Pando et al., 2012; Waki et al., 2016), and sensitivity of fetal neural 

development to ethanol and nicotine (Balaraman et al., 2012). Circulating miR-140-3p has been 

identified as dysregulated in either plasma or serum from patients with different pathological conditions 

and it has already been suggested as a potential biomarker for some of them, like myotonic dystrophy 

type 1 and type 2 (Perfetti et al., 2014; 2016), biliary atresia (Peng, Yang, et al., 2016), papillary thyroid 

carcinoma (Li et al., 2015), wet age-related macular degeneration (Ertekin et al., 2014), and myasthenia 

gravis (Nogales-Gadea et al., 2014). Its potential as non-invasive intracellular biomarker has also been 

demonstrated in blood samples from patients affected by coronary artery disease (Taurino et al., 2010; 

Karakas et al., 2017) and type 2 diabetes mellitus (Collares et al., 2013). Finally, it has already been 

associated with two psychiatric mood disorders: it is upregulated in whole blood of BD patients 

(Maffioletti et al., 2016) and major depression patients after 12 weeks of antidepressant treatment 

(Bocchio-Chiavetto et al., 2013).  

We found a positive correlation and a linear relationship between ΔCt values for miR-140-3p and 

YGTSS scores of all study participants (Figure 3.2). Lower serum levels of miR-140-3p, which we 

observed in TS+ASD patients, could be potentially associated with both occurrence and worsening of 

motor and phonic tics, whereas higher serum levels of miR-140-3p, which we found in ASD patients, 

could be linked to the absence of tics. This finding indicates that expression analysis of serum miR-140-

3p could strengthen the clinical diagnostic process of either ASD or TS+ASD. Moreover, this result 

gives strength to the hypothesis that the presence of phonic and motor tics, determining the comorbidity 

of TS with ASD, may be responsible for the different levels of serum miR-140-3p between ASD and 

TS+ASD patients. 

Through network functional analysis, we observed that the regulatory network mediated by miR-140-

3p is partly involved in managing structural and functional integrity of the nervous system and in the 

development of several human systems and organs (Table 3.2, Figure S3.5). In particular, our 

computational data showed that CD38 and NRIP1, validated targets of miR-140-3p, take part in a set of 

biological processes convergingly dysregulated in ASD, like synaptic plasticity, immune response, and 
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chromatin binding (Voineagu and Eapen, 2013; Gokoolparsadh et al., 2016; Ansel et al., 2017) (Tables 

3.3-4, Figures S3.6-7). 

CD38 was initially identified as an activation marker of immune cells, but it is now considered a virtually 

ubiquitous multifunctional molecule, involved in signaling and cell homeostasis. It is expressed in 

human lymphoid tissues as well as non-lymphoid ones, such as brain, eye, prostate, gut, pancreas, 

muscle, bone, and kidney. It is highly expressed in the brain, particularly in the hypothalamus (Quarona 

et al., 2013). It plays a dual role as both transmembrane receptor and enzyme since it catalyzes the 

formation of cyclic ADP ribose (cADPR), ADP ribose (ADPR), and nicotinic acid adenine dinucleotide 

phosphate (NAADP) from nicotinamide adenine dinucleotide (NAD+). Thanks to its ADP-ribosyl 

cyclase activity, CD38 regulates the mobilization of calcium ion from intracellular stores and therefore, 

it is mainly involved in proliferation, contraction, and secretion. Moreover, being a NAD glycohydrolase 

(NADase), it controls aging, cell protection, and energy metabolism (Quarona et al., 2013). It has also 

been found in a soluble form, maintaining this enzymatic activity, in body fluids and in exosomes 

(Quarona et al., 2013). CD38 has been linked to HIV infection, cancer, type 2 diabetes mellitus, and 

asthma (Quarona et al., 2013). Its enzymatic activity is responsible for the secretion of oxytocin (OT) 

and makes it one of the principal regulators of the social brain (Jin et al., 2007). In fact, it has been 

observed that adult CD38 knockout (CD38-/-) mice had marked defects in social behavior and strongly 

decreased plasma and CSF (cerebrospinal fluid) levels of OT. Social defects could be rescued with either 

subcutaneous OT injection or CD38 re-expression in the hypothalamus. Final in vitro experiments on 

oxytocinergic neurohypophysial axon terminals proved that ADP-ribosyl cyclase activity of CD38 was 

responsible for the secretion of OT (Jin et al., 2007). Other than in social behavior, CD38 plays a role 

also in hippocampus-dependent learning and memory (Kim et al., 2016) and in postnatal glial 

development (Hattori et al., 2017). It is not surprising that much evidence has linked CD38 to ASD. 

Two genetic variants of CD38, the intronic SNP rs3796863 and the common Japanese SNP rs1800561 

(causing the R140W mutation), have been associated with high-functioning ASD in Caucasian patients 

and with ASD in Japanese patients, respectively (Munesue et al., 2010). In a study on two young sisters 

with ASD, a deletion of 4p15.32 resulting in a BST1 (bone marrow stromal cell antigen 1) - CD38 fusion 

transcript and in disruption of CD38 expression was identified only in the girl affected by more severe 

ASD and asthma (Ceroni et al., 2014). CD38 expression is markedly reduced in LBC (lymphoblastoid 

cell) lines derived from ASD patients compared to their unaffected parents (Lerer et al., 2010); ATRA 

(all-trans retinoic acid) can upmodulate CD38 expression in these cells (Riebold et al., 2011). Finally, 

in a study evaluating differences in number and phenotype of circulating blood cells in young ASD 

patients compared to healthy controls, it has been observed that ASD patients have a higher absolute 

number of B cells per volume of blood and number of B cells expressing the cellular activation marker 

CD38 (Ashwood et al., 2011).  
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NRIP1 (also known as RIP140, receptor-interacting protein 140) is a widely expressed, multifaceted 

transcription co-regulator. Its primary physiological action is to trigger hormone-controlled gene 

suppression. It can interact with most nuclear receptors (such as estrogen, retinoic acid, and 

glucocorticoid receptors) and bind many other transcription factors, co-regulators, and DNA and histone 

modifying enzymes (Nautiyal et al., 2013). NRIP1 mainly controls female fertility in the ovary, 

promoting ovulation, and energy homeostasis in metabolic tissues, acting either as a nuclear corepressor 

through its four autonomous repression domains or as a cytoplasmic protein. It exerts a co-activator 

function in the regulation of circadian rhythms, inflammatory cascade, and mammary gland 

development (Nautiyal et al., 2013). NRIP1, apart from being linked to metabolic disorders, through 

various oncogenic signaling pathways, also takes part in development and progression of solid tumors, 

such as ovarian cancer, breast cancer, colon cancer, and hepatocellular carcinoma (Lapierre et al., 2015). 

NRIP1 is also expressed in the cortical and hippocampal areas of the brain (Nautiyal et al., 2013). It 

plays a crucial role in brain development and functioning and in cognitive and emotional processes 

(Duclot et al., 2012; Flaisher-Grinberg et al., 2014; Feng et al., 2015). NRIP1 knockout (RIP140-/-) 

mice show learning and memory deficits and increased stress response (Duclot et al., 2012). Transgenic 

mice with macrophage-specific knockdown of NRIP1 (MΦRIPKD mice) show increased baseline and 

provoked anxiety-like behavior and higher depressive-like behavior, in association with a reduced 

NRIP1 expression within the macrophage/microglia population of the VMH (ventromedial 

hypothalamus). Intra-VMH NRIP1 re-expression rescues the depressive-like behavior, having just a 

minor effect on the anxiety-like one. Moreover, macrophage NRIP1 expression correlates with the 

astrocyte one of NPY (neuropeptide Y), a neuromodulator agent, controlling mood and stress (Flaisher-

Grinberg et al., 2014). Behavioral stressful experiences, like FSS (forced swim stress) for mice, induce 

stress-like behavior, depending on decreased NRIP1 level in cortical astrocytes, hippocampus, and 

medial basal hypothalamus and a simultaneous brain cholesterol accumulation (Feng et al., 2015). 

Downregulation of NRIP1 nuclear form controls mice brain aging (Ghosh et al., 2009) whereas its 

cytosolic form acts as a neuroprotector in mice brain, preventing endoplasmic reticulum stress-induced 

neuronal apoptosis (Feng et al., 2014) and maintaining brain cholesterol homeostasis (Feng et al., 2015). 

In mice hippocampus, increased levels of NRIP1 expression are also associated with depression-like 

symptoms (Chunhua et al., 2016). NRIP1 protein levels are considerably increased in the hippocampus 

from Down syndrome patients (Gardiner, 2006). NRIP1 has been suggested as a potential candidate 

gene in autism, on the basis of in silico analysis of chromosomal regions involved in an unbalanced 

rearrangement del(21)(q11.2q21.2), identified in an ASD patient from a cohort of 126 ASD patients 

through high-resolution comparative genome hybridization (Iurov et al., 2010). Its potential etiological 

role in ASD has not been further investigated, but evidence suggests that NRIP1 and ASD could be 

indirectly linked. NRIP1 represents a molecular bridge between circadian rhythms and metabolism. It 

is part of a feedback mechanism regulating the circadian clock: it is under circadian regulation and it 
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can alter basal levels of other clock genes, by also acting as a co-activator for the nuclear receptor RORα, 

known to be a stimulator of clock genes’ transcription (Poliandri et al., 2011). RORA has been identified 

as dysregulated in many tissues from ASD patients (Cook et al., 2015). Some major evidence: RORA 

expression is reduced in cerebellum and cortex of ASD patients; RORA is differentially methylated in 

LBC lines from ASD and non-ASD siblings; RORα-deficient mice show reduced number and size of 

Purkinje cells, as it has been observed in cerebellar specimens from ASD patients; RORα controls the 

expression of a number of ASD-associated genes in human neurons, including A2BP1 (ataxin binding 

protein), NLGN1 (neuroligin 1), and CYP19A1 (aromatase) (Cook et al., 2015). In general, mutations 

affecting the function of circadian-relevant genes are more frequent in ASD patients than in unaffected 

controls (Yang et al., 2016). All these findings give strength to other results that have previously linked 

ASD and circadian clock genes, leading to the interpretation of ASD as a neurodevelopmental disorder 

arising from atypical biological and behavioral rhythms (Yang et al., 2016): NRIP1 contribution to this 

association is worthy of further investigation.  

When studying circulating miRNAs in pathologies, the biggest challenge is to elucidate the relationship 

between the diseased tissue and the corresponding expression levels of these molecules observed in 

liquid biopsies. In ASD, this challenge is further complicated by the fact that a specific and unique 

diseased tissue has not been identified yet. In a gene expression dataset obtained from the analysis of 

whole blood samples of ASD patients, we found a marked dysregulation of twelve node genes from 

miR-140-3p-mediated network (Figure 3.3). Even though we have detected the differential expression 

of some network node genes in all six ASD datasets reported, no one of those genes showed a marked 

and consistent expression trend in two or more datasets. Although it is not unexpected that independent 

microarray studies, using different technologies and platforms, give inconsistent results, we could not 

demonstrate a striking involvement of dysregulation of miR-140-3p-mediated network in ASD. Given 

the expression of miR-140-3p, CD38, and NRIP1 in the brain, it is also conceivable that brain tissues 

are responsible for serum dysregulation of miR-140-3p. Focusing on the contribution of serum 

extracellular vesicles to the expression of circulating miR-140-3p in ASD patients might help clarify 

potential tissue-serum links (Witwer, 2015). Nevertheless, our computational analysis of the potential 

functional role of intracellular miR-140-3p and of its possible involvement in ASD etiology suggests to 

the scientific community new processes, molecules, and mechanisms to further investigate in the context 

of ASD. 

Through ROC curve analyses and performance evaluation of predictive models, we proved that serum 

levels of miR-140-3p could be used in the discrimination of ASD patients from NCs, TS patients, and 

TS+ASD patients (Figures 3.4-6). We obtained the highest performance of serum miR-140-3p as a 

biomarker for the discrimination among ASD and TS+ASD patients. It was crucial to evaluate the 

performance of the biomarker through CV and permutation testing, since these predictive models were 
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based on a miRNA already identified as DE between the compared groups. We suggest that serum miR-

140-3p could serve as a potential non-invasive biomarker to complement and support the behavior-based 

diagnosis of ASD, especially the differential one between ASD and TS+ASD. The main limit of our 

biomarker analysis is that we had only one miRNA to test for its predictive accuracy. It is well known 

that a single biomarker can hardly be as performing as a combination of them. Further studies on larger 

cohorts and on participants of lower age would be necessary in order to get compelling evidence on 

miR-140-3p discriminatory power and prove its value in supporting early diagnosis of ASD. In this 

context, it would be interesting to identify which factors can be responsible for ASD patient 

misclassification (Figure 3.6.1-3D) by miR-140-3p, in order to optimize its predictive performance. 

Our study, just like many others on circulating miRNAs to be used as biomarkers, has some limitations. 

The first one regards diagnostic specificity. As reported above, circulating miR-140-3p has already been 

associated with multiple pathological conditions and this denote that it could be simply indicative of a 

general disease state (i.e., inflammation and response to stress). The second one is reproducibility. There 

is little overlap between circulating miRNAs reported as biomarkers from independent investigators and 

this challenges their clinical utility. Just one of two other independent studies on miRNA expression in 

human ASD liquid biopsies (discussed below) is consistent with ours. That is why results should be 

validated in larger cohorts and experimental conditions should be carefully standardized (Witwer, 2015). 

Our study is the third high-throughput one profiling miRNAs in a body fluid from ASD patients in order 

to discover some potential biomarkers. 

The first study (Mundalil Vasu et al., 2014) was carried out on serum from a Japanese cohort of 55 ASD 

patients and 55 unaffected controls. The authors identified and validated 13 circulating miRNAs as 

dysregulated in serum from ASD patients and showed the accurate predictive power of 5 of them in 

discriminating ASD patients (Mundalil Vasu et al., 2014). None of circulating miRNAs from this study 

matches those from our profile. Our ASD and NC sample size is smaller than the one from this work, 

but we have used an array technology that allowed us to profile the expression of many more miRNAs 

than the 139 that the authors analyzed. We tested the expression of these 5 predictive miRNAs (miR-

19b-3p, miR-130a-3p, miR-181b-5p, miR-320a, and miR-572) (Mundalil Vasu et al., 2014), together 

with miR-429 from our previous investigation on TS (Rizzo et al., 2015), in sera from 15 ASD patients, 

15 TS patients, and 15 NCs. We did not observe any difference in miRNA expression among groups 

with the exception of miR-429, which we confirmed as DE between TS patients and NCs. Differences 

in sample size (55 samples per group vs 15 samples per group) did not alter the result on miR-429 

expression (Rizzo et al., 2015).  However, functional enrichment analyses from both studies (Mundalil 

Vasu et al., 2014; this chapter) demonstrated over-representation of the same neurological pathways, as 

TGF-β signaling, Hedgehog signaling, Wnt signaling, and regulation of synaptic plasticity. This 

observation suggests that discrepancies can be explained with differences in pre-analytic variables, such 
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as genetic structure of studied populations, cohort composition, sample processing, validation technique, 

and data normalization (Witwer, 2015). Ethnicity of participants, cohort size, and miRNA panel and 

intercalating dye-based system used may have determined the inconsistencies observed. 

The second paper (Hicks et al., 2016) describes a pilot study on whole saliva from an US cohort of 24 

ASD patients and 21 unaffected controls, whose results partly match with ours. By RNA-sequencing, 

the authors identified 14 miRNAs as dysregulated in saliva from ASD patients and showed the 

discriminative accuracy of this molecular signature (Hicks et al., 2016). MiR-140-3p is part of this ASD 

molecular fingerprint and is upregulated in ASD patients compared to unaffected controls, as in our 

study (Hicks et al., 2016; this chapter). Moreover, in agreement with our results, their functional 

enrichment analysis detected significant over-representation of target genes related to neuronal 

development and transcriptional activation (Hicks et al., 2016). Our ASD and NC sample size is slightly 

bigger than the one from this work. In addition, sequencing data from it have not been validated through 

miRNA-specific qPCR assays. Discrepancies between this work and our study can also be explained, 

other than with all the factors listed above (in particular, differences in pre-analytic variables: processed 

serum vs whole saliva), with the fact that they investigated two different human body fluids. It is 

interesting that miR-140-3p shows the same expression trend in both saliva and serum. This observation 

may suggest that shared mechanisms could determine the increased levels of miR-140-3p in both body 

fluids. 

These two studies, differently from ours, have identified more than one biomarker for ASD. 

Furthermore, they have focused only on ASD patients and NCs, whereas our study is the first high-

throughput one profiling circulating miRNAs also in patients suffering from another 

neurodevelopmental disorder comorbid with ASD, TS+ASD patients. 

 

3.5. Summary and conclusions 

Through the identification of a serum biomarker, this study provides insight into concealed molecular 

mechanisms determining ASD and a potential complementary and supportive mean for a simpler, faster, 

and unbiased ASD diagnosis. The network that miR-140-3p regulates is involved in a set of biological 

processes convergingly dysregulated in ASD. Molecular characterization of miR-140-3p network would 

contribute to further clarify the heterogeneous molecular basis of ASD. Moreover, serum miR-140-3p 

could potentially be used as a non-invasive biomarker for ASD, easy to test through liquid biopsies. 

This study confirmed the appropriateness and applicability of our approach for the investigation of ASD 

and let us spot some interesting potential links and shared mechanisms of miRNA secretion between 

different human body fluids. These observations led us to a subsequent analysis of circulating miRNAs 
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in processed saliva samples from ASD patients. Importantly, among all body fluids, saliva represents 

the most accessible and complete source of different types of molecules that could reflect genetic, 

epigenetic, environmental, metabolic, emotional, and behavioral alterations in ASD. 

 

3.6. Materials and methods 

3.6.1. Patient selection 

From a database of more than 2000 patients (from the Section of Child and Adolescent Psychiatry, 

Department of Clinical and Experimental Medicine, University of Catania), seventy-nine Caucasian 

patients, aged 3-13 years and from varying socio-economic contexts, were randomly recruited and 

studied from January to November 2016. Thirty patients affected by ASD [mean age: 6.5 (SD, standard 

deviation: 3.5); M:F 22:8], twenty-four patients affected by TS [mean age: 8.7 (SD: 5.2); M:F 21:3], 

and twenty-five patients affected by TS+ASD [mean age: 9.3 (SD: 6.7); M:F 25:0] were included in the 

study. They were compared to twenty-five randomly selected neurologically intact unaffected NCs 

[mean age: 9.5 (SD: 3.9); M:F 16:9], recruited from local schools, without any history of either ASD or 

TS and who suffered from neither chronic diseases nor psychiatric disorders (Table 3.5). Serum samples 

from these participants were part of the discovery set used for miRNA profiling data validation.  

The discovery set of serum samples used for miRNA profiling was created by randomly selecting from 

the database four ASD (M:F 3:1), five TS (M:F 4:1), and four TS+ASD (M:F 4:0) patients with severe 

symptoms. In this set, an extra TS patient was preferred in place of a NC (M:F for NC group 3:0, three 

NCs) because of the strong interest in investigating the comparisons TS+ASD vs TS and ASD vs TS.  

TS and ASD affect males more than females with M:F ratios of 3:1 (Robertson, 2012) and 4:1 

(Christensen et al., 2016), respectively. For this reason, it was inevitable that the three clinical groups 

were mainly composed of males: females are not easy to recruit. We performed a gender control analysis 

to check if those different group compositions could have an effect on downstream results. Gender 

distribution is not different between ASD and NC (Fisher’s exact test, two-sided p-value = 0.56), TS 

and NC (p-value = 0.10), TS+ASD and TS (p-value = 0.11), and ASD and TS (p-value = 0.31). However, 

it is different between TS+ASD and NC (p-value = 0.002) and TS+ASD and ASD (p-value = 0.006). 

This demonstrated that the TS+ASD group, the most intriguing to analyze, was particularly problematic: 

recruiting female patients suffering from TS+ASD was difficult, as it is possible to infer from the TS 

and ASD M:F ratios reported above. That is why we repeated a final gender control analysis (see Section 

3.6.8) to validate and confirm the accuracy of results from the biomarker performance evaluation 

analysis in the comparison TS+ASD vs NC. 
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Table 3. 5. Clinical and neuropsychological features of study participants. Data are shown as means 
and standard deviations between parentheses. ASD: Autism Spectrum Disorder; TS: Tourette syndrome; 
NC: Unaffected Control; M: male; F: female; IQ: Intelligence Quotient; YGTSS: Yale Global Tic 
Severity Scale; ADOS: Autism Diagnostic Observation Schedule. 

 Number of 
participants 

Age M:F 
ratio 

IQ YGTSS ADOS 

      Communication 
 

Social 
interaction 

 

Imagination 
 

Repetitive 
and 

restricted 
behaviors 

ASD 30 6.5 
(3.5) 

22:8 59.4 
(20.6) 

0 7.3 (2.3) 7.6 
(2.1) 

3 (2.5) 3.5 
(1.6) 

TS  24 8.7 
(5.2) 

21:3 93.7 
(19.1) 

17.1 
(7.9) 

0 0 0 2.4 
(1.6) 

TS+ 
ASD 

25 9.3 
(6.7) 

25:0 94.6 
(8.9) 

22.12 
(10.5) 

6.4 (3.2) 8.5 
(3.9) 

3.1 (4.3) 3.7 
(1.9) 

NC 25 9.5 
(3.9) 

16:9 80.9 
(24.5) 

1.9 
(1.7) 

0 0 0 0 

 

The study was approved by the local Ethics Committee. All parents gave written informed consent.  

Diagnoses of ASD, TS, and other clinical conditions were made according to both DSM-IV-TR 

(Diagnostic and Statistical Manual of Mental Disorders, IV edition – Text Revision) and DSM-5 criteria 

by a child neurologist (Professor Renata Rizzo). All the participants were evaluated at the University 

Hospital Policlinico-Vittorio Emanuele of Catania. The three clinical groups (ASD, TS, and TS+ASD) 

and the NCs were assessed using the following scales/schedules: ADOS and ADI-R to evaluate ASD 

symptoms; YGTSS to evaluate presence and severity of tics. Moreover, the three clinical groups (ASD, 

TS, and TS+ASD) and the NCs were also assessed by a psychologist through WISC-III (Wechsler 

Intelligence Scale for Children, III edition) as an evaluation of both IQ and cognitive functioning. 

Neuropsychological features of patients are summarized in Table 3.5. 

In a previous study (Rizzo et al., 2015), we reported that only miR-429 was significantly DE in the 

serum of TS patients compared to NCs: TS patients were included in this experimental series only 

aiming to compare them with the other classes of neuropsychiatric patients. 

3.6.2. Sample processing 

Peripheral blood samples from all participants were taken in the morning using a butterfly device into 

serum separator collection tubes, provided with Clot activator and gel for serum separation as additives 

(BD Biosciences). Collection tubes were treated according to current procedures for clinical samples. 

In order to separate serum from blood cells, tubes were rotated end-over-end at 20°C for 30’ and then 
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centrifuged at 3500 rpm at 4°C for 15’ in a Beckman J6-M Centrifuge. Supernatants were aliquoted into 

1.5 ml RNase-free tubes and stored at −80°C. Prior to RNA extraction, stored supernatants were 

centrifuged again at 3500 rpm at 4 °C for 15’ to remove circulating cells or debris. Serum samples were 

aliquoted into 1.5 ml RNase-free tubes and they were either immediately used for RNA extraction or 

stored at −80°C until analysis (Rizzo et al., 2015).  

3.6.3. RNA extraction 

RNA was extracted from 400 μl serum samples using Qiagen miRNeasy Mini Kit (Qiagen), according 

to Qiagen Supplementary Protocol for purification of total RNA, including small RNAs, from serum or 

plasma. RNA was eluted in a 40 μl total volume of RNase-free water with two consecutive steps of 

elution (30 μl followed by another 10 μl of RNase-free water) performed in the same collection tube. 

3.6.4. MiRNA profiling 

We used TLDA technology to profile the serum expression of 754 different human miRNAs of four 

ASD patients, five TS patients, four TS+ASD patients, and three NCs (discovery set). 3 μl of RNA were 

reverse transcribed and preamplified according to manufacturer’s instructions. Preamplified products 

were loaded on TaqMan Human MicroRNA Array v3.0 A and B 384-well microfluidic cards (Applied 

Biosystems). PCR reactions on TLDAs were performed on a 7900HT Fast Real Time PCR System 

(Applied Biosystems) (Ragusa et al., 2016).  

We individually carried out the analysis on microfluidic cards A and B. We used a customized 

normalization approach for the relative quantification analysis. For each comparison, a Ct value matrix 

(miRNAs in rows, samples in columns) was created. In a similar way to the GMN (global median 

normalization) method (Park et al., 2003), for each sample of the comparison, the median and mean Ct 

values within the array, reflecting the loaded mass of template cDNA, were calculated. However, all Ct 

values representing a specific miRNA were kept out of these calculations if even just one of them 

corresponded to a flagged well. Then, using the Pearson correlation, miRNAs, whose expression profile 

was closer (more positively correlated) to these values, were identified as the best endogenous controls 

within the arrays. We normalized miRNAs to the top three stable miRNAs within the arrays. miR-146a 

and miR-223* were the most frequently stable miRNAs for cards A and B, respectively, and the most 

abundant among those we could select.  

Therefore, for each comparison, three ΔCt value matrices (miRNAs in rows, samples in columns) were 

produced according to the 2−ΔΔCt method (Schmittgen and Livak, 2008). DE circulating miRNAs were 

obtained performing SAM (Significance of Microarrays Analysis) statistical analysis on these matrices 

with MeV (Multi experiment viewer v4.8.1) statistical analysis software (http://mev.tm4.org). For each 

pairwise comparison, we used a two-class unpaired test, based on at least 100 permutations per miRNA, 
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with a FDR cut-off of 0.15, in order to detect dysregulated miRNAs. This analysis identified many DE 

miRNAs for each comparison. However, we have used very strict criteria to select miRNAs for further 

validation (i.e., number of SAM tests in which they were identified as DE, number of comparisons in 

which they resulted as DE, their abundance, and the quality of their amplification curves during the 

profiling runs) in order to investigate only the most promising ones. 

3.6.5. MiRNA profiling data validation 

RNA from sera of thirty ASD, twenty-four TS, and twenty-five TS+ASD patients and twenty-five NCs 

(validation set) was used to perform miRNA-specific reverse transcription reactions producing miRNA-

specific cDNAs for real-time PCRs. These RT-PCR analyses were performed using TaqMan MicroRNA 

Assays (Applied Biosystems) specific for the most interesting miRNAs identified as DE, miR-30d, miR-

140-3p, miR-148a*, and miR-222, and for the selected endogenous control, miR-146a. At first, the ASD 

group was composed of thirty-two patients. We checked if some of those samples should be considered 

as outliers, within this original ASD group, for: (1) the serum expression of miR-140-3p; (2) the severity 

of ASD symptoms. We looked at their ∆Ct values for miR-140-3p and at scores that they obtained for 

the four items of the ADOS scale (A:  Communication; B: Social interaction; C: Imagination; D: 

Repetitive and restricted behaviors). For these expression values and ADOS scores, we defined the 

corresponding mean ± 2*(SD) ranges and we considered patients with a value and/or score outside of 

those ranges as outliers. Two ASD patients were excluded from the original ASD group since: (1) both 

were outliers for miR-140-3p expression; (2) one was an outlier for the Imagination item (1/4 ADOS 

items), whereas the other one was an outlier for the Imagination and Repetitive and restricted behaviors 

items (2/4 ADOS items). All the following analyses were performed with GraphPad Prism for Windows 

v6.01 (GraphPad Software) (www.graphpad.com). D’Agostino-Pearson omnibus K2 test and Shapiro-

Wilk test were performed to check if data from every small group were normally distributed. Ordinary 

one-way ANOVA was used to test the differential expression of those miRNAs between the four groups. 

Statistical significance was established at a p-value ≤ 0.05. Tukey’s multiple comparisons test was 

performed to identify which groups differed in the selected miRNAs’ expression. Statistical significance 

was established at a multiplicity adjusted p-value ≤ 0.05. Expression FC values of miRNAs were 

calculated by applying the 2−ΔΔCt method (Schmittgen and Livak, 2008). 

3.6.6. Correlation between miR-140-3p expression and neuropsychiatric parameters 

Correlation between ΔCt values for miR-140-3p, obtained from the normalization to miR-146a, and 

neuropsychiatric parameters was analyzed in both a general (all patients and controls) and a class-

specific (just one class of patients and controls) way, since some of these parameters were only related 

to a certain class of neuropsychiatric disorders. IQ (Intelligence Quotient), ADOS items regarding 

communication, social interaction, imagination, and repetitive and restricted behaviors (ADOS items A-
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D), and YGTSS were the neuropsychiatric parameters chosen for this analysis. Either Pearson or 

Spearman correlation was computed on GraphPad Prism software when analyzing normally and not 

normally distributed data, respectively. Two-sided p-values from this correlation analysis were corrected 

for multiple comparisons by using three different approaches: Bonferroni correction, Holm-Bonferroni 

correction, and BH FDR procedure. Statistical significance was established at a p-value ≤ Bonferroni 

corrected α = 0.05/16 = 0.003, at a Holm-Bonferroni corrected p-value ≤ 0.05, and at a BH FDR adjusted 

p-value ≤ 0.01. Linear regression analysis was also carried out on GraphPad Prism software only for 

significant correlations. Statistical significance was established at a p-value ≤ 0.05. 

3.6.7. Computational Analyses 

3.6.7.1. Reconstruction of the miR-140-3p-mediated regulatory network 

miR-140-3p targets whose validation was based on strong evidence were retrieved by DIANA-TarBase 

v7.0 (Vlachos et al., 2015) (http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=tarbase/index) and miRTarBase (Chou et al., 2016) 

(http://mirtarbase.mbc.nctu.edu.tw/) databases. The biological network, composed of MIR140, these 

targets, and their first neighbors, was built retrieving interactome data through BisoGenet v3.0.0 Plug-

in (Martin et al., 2010) in Cytoscape v3.4.0 (Shannon et al., 2003). Network centrality analysis, 

permitting the identification of the nodes that, more than others, were good candidates as regulators of 

the underlying biological processes in which the network is involved, was carried out through 

CentiScaPe v2.1 Plug-in (Scardoni et al., 2014). 

3.6.7.2. Network functional analysis 

clusterProfiler v3.2.11 R package (Yu et al., 2012) was used to perform functional enrichment analyses 

on miR-140-3p-mediated regulatory network node genes in R v3.3.2 (R Core Team, 2016) 

(https://www.R-project.org/). We searched for the gene annotation terms from the GO, DO, KEGG, and 

Reactome databases that were over-represented in the list of network node genes compared to the entire 

genome. Statistical significance for the hypergeometric test was established at a BH adjusted p-value ≤ 

0.05. gofilter() and simplify() functions in clusterProfiler were employed in order to select level-specific 

GO terms and to remove the most redundant ones, respectively. 

3.6.7.3. Network expression analysis 

In order to investigate if deregulation of network node genes was implicated in ASD, we searched for 

raw high-throughput gene expression datasets (Gregg et al., 2008; Kuwano et al., 2011; Voineagu et al., 

2011; Ginsberg et al., 2012; Kong et al., 2012) produced from the analysis of samples of ASD patients 

on two public repositories, GEO (Gene Expression Omnibus) DataSets (Edgar et al., 2002) and 

ArrayExpress (Kolesnikov et al., 2015). Datasets retrieved by GEO DataSets were analyzed performing 
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limma tests with the GEO2R tool (Barrett et al, 2013) 

(https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html), whereas datasets retrieved by ArrayExpress were 

analyzed performing Tusher SAM tests with MeV software. We reported only network node genes 

whose log2FC expression was significantly higher than 1 and lower than -1 as upregulated and 

downregulated, respectively, within ASD datasets. MeV software was also used to produce the curated 

ASD expression heatmap. 

3.6.8. ROC curve analysis and biomarker performance evaluation 

ΔCt values for miR-140-3p, obtained from the normalization to miR-146a, served as input data to 

perform a classical univariate ROC curve analysis for each of the comparisons where we found this 

miRNA to be dysregulated on the server Metaboanalyst 3.0 (Xia and Wishart, 2016) 

(http://www.metaboanalyst.ca/). An appropriate ΔCt cut-off point maximizing both sensitivity and 

specificity (that is, the threshold that maximizes the distance to the diagonal line) was found for each 

curve by calculating the maximum Youden index J (max [(sensitivity + specificity) – 1]). GraphPad 

Prism software was used to create Figure 3.4 and 3.5. The true positive rate (y-axis) was plotted in 

function of the false positive rate (x-axis), for different ΔCt cut-off points.  

Since these ROC curves were based on a miRNA already identified as DE between the compared groups, 

through them we could only assess the idealized miR-140-3p discriminative power. It is possible that 

this miRNA only accurately predicts outcomes in the initial data set and that minor fluctuations in the 

training data could markedly lower its predictive performance.  

Therefore, after these preliminary ROC curve analyses, we built corresponding logistic regression 

models for miR-140-3p expression and we tested them through CV and permutation testing, once again, 

by using the server Metaboanalyst 3.0. CV gives an indication of how accurate a given model might be 

in predicting new samples, validating its general applicability (Xia et al., 2013). 100-time repeated 

random sub-sampling CV was used to test the performance of the built logistic regression models. At 

each CV, 2/3 of samples are used for model training and the remaining 1/3 of samples is used for testing. 

Permutation testing indicates if a given model is significantly different from a random guessing model 

for the sample population, validating the proposed model structure (Xia et al., 2013). Permutation testing 

on the performance measure AUC was used to calculate the significance of the built logistic regression 

models. The permutation tests use this procedure: random label re-assignment to each sample; 3-time 

repeated random sub-sampling CV; comparison of the performance measures between the models 

obtained by using the original and the permuted sample labels. This procedure was repeated 100 times. 

If the performance measure of the original data lies outside the normal distribution of the one of the 

permuted data, then the tested model is significant. Statistical significance was established at a p-value 

≤ 0.05. The ASD vs NC and ASD vs TS models incorrectly classified the same 11 ASD patients (M:F 
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ratio 8:3), whereas the ASD vs TS+ASD model incorrectly classified only 8 (of those previously 

mentioned 11 ones) ASD patients (M:F ratio 5:3). In light of what showed in Section 3.6.1, we tested if 

gender distribution was significantly different between ASD patients that were either correctly or 

incorrectly identified by the three models, to check if gender represented an attribute that could 

potentially lead to misclassification of ASD patients. Gender distribution was not different for neither 

the ASD vs NC and ASD vs TS models (Fisher’s exact test, two-sided p-values = 1.00), nor for the ASD 

vs TS+ASD model (Fisher’s exact test, two-sided p-values = 0.64). 

3.7. Supplementary Figures 

 

Figure S3. 1. MiR-140-3p-mediated regulatory network. Nodes representing MIR140 gene and direct 
target genes of miR-140-3p are depicted as red triangle and red diamonds, respectively; those 
symbolizing protein-coding genes are drawn as yellow circles; those standing for miRNA-coding genes 
are illustrated as orange triangles. Size of both nodes and node labels, except for CD38, MIR140, and 
NRIP1, is directly proportional to node degree within the network. 
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Figure S3. 2. Over-represented GO terms in miR-140-3p-mediated regulatory network compared to 
the entire genome. (A) Dot plot for GO Biological Process terms. (B) Dot plot for GO Molecular 
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Function terms. (C) Dot plot for GO Cellular Component terms. Each circle in the plots symbolizes an 
over-represented term: its x-axis coordinate reflects the Gene Ratio value; its size is directly 
proportional to the Count value; its color represents the Benjamini-Hochberg adjusted p-value 
generated by the hypergeometric test. Gene Ratio: the ratio of number of genes of interest that are 
annotated with a certain term from the database used to perform the analysis to number of genes of 
interest that are annotated with terms from the same database. Count: number of node genes within the 
network that are annotated with a certain term. GO: Gene Ontology. 

 

Figure S3. 3. Over-represented KEGG and Reactome terms in miR-140-3p-mediated regulatory 
network compared to the entire genome. (A) Dot plot for KEGG Pathway terms. (B) Dot plot for 
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Reactome Pathway terms. For in-depth description of the plots see Figure S3.2 legend. KEGG: Kyoto 
Encyclopedia of Genes and Genomes. 

 

Figure S3. 4. Over-represented DO terms in miR-140-3p-mediated regulatory network compared to 
the entire genome. Dot plot for DO terms. For in-depth description of the plot see Figure S3.2 legend. 
DO: Disease Ontology. 



Chapter 3 

68 
 

 

Figure S3. 5. Over-represented GO Biological Process terms regarding nervous system and 
development in miR-140-3p-mediated regulatory network. Dot plot for all the most interesting GO 
Biological Process terms regarding nervous system and development. Each symbol in the plot 
symbolizes an over-represented term: its x-axis coordinate reflects the Gene Ratio value; its y-axis 
coordinate reflects the Background Ratio value; its color represents the Benjamini-Hochberg adjusted 
p-value generated by the hypergeometric test. Gene Ratio: the ratio of number of genes of interest that 
are annotated with a certain term from the database used to perform the analysis to number of genes of 
interest that are annotated with terms from the same database. Background Ratio: the ratio of number 
of genes in the genome that are annotated with a certain term from the database used to perform the 
analysis to number of genome genes that are annotated with terms from the same database. GO: Gene 
Ontology. 
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Figure S3. 6. Over-represented GO, DO, and KEGG terms associated with CD38 in miR-140-3p-
mediated regulatory network. Dot plot for all the most interesting GO, DO, and KEGG terms whose 
enrichment is determined by CD38. For in-depth description of the plot see Figure S3.5 legend. For 
more information about what symbol shapes stand for see figure legend. GO terms whose enrichment 
is determined by both CD38 and NRIP1 are represented by bigger symbols. GO: Gene Ontology; DO: 
Disease Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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Figure S3. 7. Over-represented GO and Reactome terms associated with NRIP1 in miR-140-3p-
mediated regulatory network. Dot plot for all the most interesting GO and Reactome terms whose 
enrichment is determined by NRIP1. For in-depth description of the plot see Figure S3.5 legend. For 
more information about what symbol shape stands for see figure legend. GO terms whose enrichment 
is determined by both CD38 and NRIP1 are represented by bigger symbols. GO: Gene Ontology. 

Five more supplementary files can be found online (as part of the final paper published on Frontiers in 

Molecular Neuroscience in August 2017) at: 

http://journal.frontiersin.org/article/10.3389/fnmol.2017.00250/full#supplementary-material 
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Chapter 4. Circulating miRNAs in supernatant saliva from ASD 

patients 

 

4.1. Abstract 

Given its prevalence and social impact, ASD is drawing much interest. Molecular basis of ASD is 

heterogeneous and only partially known. Saliva represents an easily accessible, rich, and complete 

source of different types of molecules that could reflect genetic, epigenetic, environmental, metabolic, 

emotional, and behavioral alterations in ASD. To further investigate ASD etiology and to identify 

potential biomarkers to support its diagnosis, we used NanoString nCounter technology to profile 

supernatant saliva circulating miRNAs from 23 ASD patients and 12 NCs. Through validation assays in 

54 ASD patients and 28 NCs, we demonstrated that both miR-29a-3p and miR-141-3p are upregulated 

in ASD saliva compared to NC one (Mann-Whitney test, p-value = 0.001, < 0.0001, respectively). ΔCt 

values for both miRNAs are correlated with overlapping neuropsychiatric scores evaluating ASD 

defects in social interaction and verbal communication. Target genes of miR-29a-3p and miR-141-3p, 

in particular the well-documented ASD susceptibility gene PTEN (phosphatase and tensin homolog), 

represent main components and regulators of pathways and processes known to be dysregulated in ASD 

(i.e., PI3K-Akt-mTOR signaling pathway, neuronal differentiation, synaptic function, and methionine 

metabolism). Biomarker performance evaluation proved that saliva miR-29a-3p and miR-141-3p when 

used in combination could be useful and non-invasive tools for discriminating ASD patients from NCs 

(AUC: 0.74; sensitivity: 64.81%; specificity: 67.86%). These findings suggest that these miRNAs could 

be used as supportive means for the recognition of ASD verbal and social defects and that a further 

characterization of their potential central role in neurodevelopment is needed. 

 

4.2. Specific background and aims 

Recent studies unanimously propose saliva as the ideal body fluid for the potential identification of ASD 

molecular biomarkers (Galiana-Simal et al., 2018). Saliva is secreted in the mouth by the sublingual, 

submandibular, and parotid salivary glands, which are under parasympathetic and sympathetic 

autonomic innervation controlling saliva secretion through the release of various neurotransmitters, such 

as acetylcholine, noradrenaline, and NPY (Ferreira and Hoffman, 2013). This close relationship between 

salivary glands and nervous system suggests that saliva could represent a rich pool of biomarkers 

reflecting, not only the systemic state of the body, but also various normal and pathological conditions 
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of the nervous system. In fact, in recent years, saliva has been used as a valid source of biomarkers for 

many neural pathologies, including sleep disorder, BD, schizophrenia, ASD, depression, and 

neurodegenerative diseases (Farah et al., 2018; Panahi et al., 2016; Wormwood et al., 2015), in addition 

to head and neck cancers and breast cancer (Aro et al., 2017; Panahi et al., 2016).  

The alternative use of this liquid biopsy offers many important advantages (Galiana-Simal et al., 2018): 

(1) its sampling is painless, quick, and non-invasive; (2) its sampling procedure is easy and it does not 

need to be performed by professionals with formal medical training; (3) it contains a wide spectrum of 

stable molecules, easily and inexpensively measurable, (4) many of which are produced by the brain 

and are specifically related to its physiology and functioning (Lindell et al., 1999). The first two points 

make saliva the most appropriate body fluid to be sampled from ASD patients (Putnam et al., 2012; 

Spratt et al., 2012), clinically defined by high sensory reactivity (Lydon et al., 2016; Spratt et al., 2012) 

and severe behavioral difficulties, especially in stressful and anxiety-provoking social contexts. The last 

two ones encourage the search for potential saliva biomarkers to be used to support ASD clinical 

behavior-based diagnosis and to have promising insights about the heterogeneous etiology of this 

disorder.  

Many molecules have been tested and monitored in ASD saliva samples (Galiana-Simal et al., 2018): 

(i) hormones, like cortisol (Tomarken et al., 2015; Bitsika et al., 2015; Gabriels et al., 2013; Spratt et 

al., 2012) and sexual steroids; (ii) proteins (Ngounou Wetie et al., 2015), including cytokines, peptide 

hormones (like OT) (Gordon et al., 2013), peptides, and neurotransmitters; (iii) nucleic acids, as mRNAs 

(Panahi et al., 2016), miRNAs (Hicks et al., 2016), and DNA. Therefore, saliva represents a rich and 

complete source of different types of molecules that could give researchers hints at the genetic, 

epigenetic, environmental, metabolic, emotional, and behavioral levels of ASD investigation. This oral 

sampling-based approach even gives the opportunity of easily explore the role of the oral microbiota in 

ASD (Qiao et al., 2018), evaluating how it may in turn affect brain function. 

A molecular test for non-syndromic ASD is not available still and diagnosis relies on clinical assessment 

and confirmation. Considering the clinical variation and etiological heterogeneity of ASD, a precise 

diagnosis can be very difficult. That is why there is an urgent need for potential ASD biomarkers that 

could support clinical discrimination of patients. An ideal ASD biomarker should be: differentially 

observed in ASD patients compared to control general population; detectable in the ASD population at 

every stage of life; specific and helpful in ASD discrimination from other neurodevelopmental disorders; 

and correlated with available ASD screening tools, scales, and parameters (Galiana-Simal et al., 2018). 

At the moment, only one pilot study has characterized miRNAs in whole saliva from ASD patients 

through RNA-sequencing (Hicks et al., 2016). We hypothesized that the supernatant saliva profile of 

circulating miRNAs may contain some specific fingerprints for ASD that could also complement the 
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discrimination of ASD patients. Aiming to gain more knowledge about ASD biomolecular basis and 

identify new potential biomarkers for this disorder through an oral sampling-based approach, we 

exploited NanoString nCounter technology to analyze the expression of circulating miRNAs in saliva 

from ASD patients and unaffected controls. 

We validated saliva circulating miR-29a-3p and miR-141-3p as significantly upregulated in ASD 

patients compared to NCs. In addition, we demonstrated that their higher saliva expression levels are 

correlated with neuropsychiatric scores evaluating ASD aberrations in social interaction and verbal 

communication. Then, we observed that both target genes of miR-29a-3p and those of miR-141-3p, in 

particular PTEN, represent main components and regulators of pathways and processes that are 

convergingly dysregulated in ASD (i.e., PI3K-Akt-mTOR signaling pathway, neuronal differentiation, 

synaptic function, and methionine metabolism). Finally, through biomarker performance evaluation, we 

proved that saliva miR-29a-3p and miR-141-3p when used in combination could be used as helpful tools 

for the discrimination of ASD patients.  

 

4.3. Results 

4.3.1. Profiling of circulating miRNAs in saliva from ASD patients 

Through NanoString nCounter technology, we investigated the expression levels of 827 circulating 

miRNAs in processed saliva from twenty-three ASD patients and twelve NCs. Data were normalized to 

the 36 miRNA reporters with the highest counts within the panel. 

We identified ten miRNAs (let-7b-5p, miR-16-5p, miR-29a-3p, miR-141-3p, miR-146a-5p, miR-200a-

3p, miR-200b-3p, miR-205-5p, miR-451a, and miR-4454 + miR-7975) as DE in ASD saliva compared 

to NC one (FDR < 0.25) (Figure 4.1, Table 4.1). 

 

Figure 4. 1. Ten miRNAs are dysregulated in saliva from ASD patients compared to NCs. Sample 
group annotations and names of DE miRNAs are reported in columns and rows of this miRNA 
expression heatmap, respectively. Colored heatmap cells represent expression values of each DE 
miRNA in every sample of a certain group. Data for each miRNA are shown as ratios of sample-specific 
normalized count to NC mean normalized count to obtain a better visualization of miRNA expression 
trends. For more information about miRNA expression trend, see figure legend. 
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Table 4. 1. Ten miRNAs are dysregulated in ASD saliva. Name, mean normalized count in both ASD 
and NC groups, and expression FC of each DE miRNA are reported. MiRNAs are decreasingly ordered 
by their FC. Since the same CodeSet probe hybridizes to both miR-4454 and miR-7975, we considered 
those two miRNAs as just one dysregulated molecule (miR-4454 + miR-7975). DE: differentially 
expressed; ASD: Autism Spectrum Disorder; NC: Unaffected Control; FC: Fold Change. 

DE miRNA ASD 
mean normalized count 

NC 
mean normalized count 

ASD vs CTRL 
FC 

miR-4454 + miR-7975 5872.62 1735.37 3.38 

miR-451a 341.60 179.77 1.90 

miR-200a-3p 136.99 79.12 1.73 

let-7b-5p 352.66 206.07 1.71 

miR-146a-5p 133.83 81.94 1.63 

miR-200b-3p 197.65 121.34 1.63 

miR-141-3p 168.21 109.28 1.54 

miR-29a-3p 312.97 443.22 -1.42 

miR-205-5p 228.21 324.83 -1.42 

miR-16-5p 652.25 1026.10 -1.57 

 

4.3.2. Dysregulated expression levels of miR-29a-3p and miR-141-3p in saliva from ASD 

patients 

We selected miR-16-5p, miR-29a-3p, miR-141-3p, miR-146a-5p, and miR-200a-3p for further 

validation through single TaqMan assays. MiR-21-5p was used as endogenous control in all the analyses 

carried out. 

We found both miR-29a-3p and miR-141-3p as significantly upregulated in saliva from fifty-four ASD 

patients compared to twenty-eight NCs (Mann-Whitney test, p-value = 0.001 and p-value < 0.0001, 

respectively) (Figure 4.2). It is worth noting that we did not confirm the expression trend obtained in 

the profiling analysis for miR-29a-3p: according to the validation analysis on bigger groups, this miRNA 

is slightly upregulated, rather than downregulated, in ASD saliva (Figure 4.2).  
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Figure 4. 2. MiR-29a-3p and miR-141-3p are significantly upregulated in saliva from ASD patients. 
Single TaqMan assays for miR-29a-3p and miR-141-3p. Box and whiskers plots depicting saliva levels 
of these two miRNAs in ASD patients and NCs. Y-axes represent the distributions of -1*ΔCt values for 
miR-29a-3p and miR-141-3p. P-values from Mann-Whitney test are shown in the box next to the plots 
while expression FC values are shown in the boxes below them. 

 

We did not observe any expression differences between the two groups for miR-16-5p (Mann-Whitney 

test, p-value = 0.12), miR-146a-5p (Mann-Whitney test, p-value > 0.99), and miR-200a-3p (Mann-

Whitney test, p-value = 0.60). Since the p-value obtained for miR-16-5p was very close to the chosen α 

for Mann-Whitney test, we repeated the analysis just for this miRNA by stratifying study participants 

for their age and considering two different subgroups in the validation set of samples, the young (age ≤ 

6; 17 ASD patients vs 9 NCs) and old (age ≥ 7; 37 ASD patients vs 19 NCs) ones. We found miR-16-

5p as significantly downregulated in ASD saliva only in the old group (Mann-Whitney test, p-value = 

0.03), and not in the young one (Mann-Whitney test, p-value = 0.79) (Figure 4.3). 
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Figure 4. 3. MiR-16-5p is slightly downregulated in saliva between ASD patients and NCs aged seven 
or older. Single TaqMan assays for miR-16-5p. Box and whiskers plot depicting saliva levels of miR-
16-5p in ASD patients and NCs belonging to either the young or the old subgroup. Y-axis represents the 
distribution of -1*ΔCt values for miR-16-5p. P-value from Mann-Whitney test and expression FC value 
for the old subgroup are shown in the boxes next to the plot. 

 

4.3.3. Correlation between expression levels of dysregulated miRNAs and 

neuropsychiatric parameters 

In order to test if any link existed between saliva expression of these two dysregulated miRNAs and 

commonly used ASD neuropsychiatric parameters, we computed the correlation between ΔCt values for 

either miR-29a-3p or miR-141-3p and various neuropsychiatric scores of study participants (Tables 4.2-

3).  

 

Table 4. 2. Correlation between miR-29a-3p expression and neuropsychiatric parameters. We chose 
IQ (Section 1), ADI-R (Section 2), and ADOS (Section 3) scores as neuropsychiatric parameters for 
these analyses. Spearman r values from every analysis are reported along with corresponding raw and 
multiple comparison corrected p-values. Only correlations with a p-value ≤ Bonferroni corrected α 
were strictly selected as significant ones. Bonferroni corrected α = 0.05/11 = 0.0045. IQ: Intelligence 
Quotient; VIQ: Verbal Intelligence Quotient; PIQ: Performance Intelligence Quotient; TIQ: Total 
Intelligence Quotient; ADI-R: Autism Diagnostic Interview-Revised; ADOS: Autism Diagnostic 
Observation Schedule; 95% CI: 95% Confidence Interval; NC: Not Computed. 

1. IQ and miR-29a-3p 

 ∆Ct 
vs. 

VIQ 

∆Ct 
vs. 

PIQ 

∆Ct 
vs. 

TIQ 
 

Spearman r 0.33 0.19 0.24  
95% CI 0.11 - 0.52 -0.04 - 0.39 0.02 - 0.44  

two-sided p-value 0.0027 0.10 0.03  
Is p < Bonferroni Y N N  
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corrected α? 
Bonferroni-Holm 
corrected p-value 0.01 NC 0.03  

Benjamini-
Hochberg 

adjusted p-value 
0.005 NC 0.03  

Number of XY 
Pairs 80 80 80  

2. ADI-R and miR-29a-3p 

 
∆Ct 
vs. 

ADI-R 
Social interaction 

∆Ct 
vs. 

ADI-R 
Communication 

∆Ct 
vs. 

ADI-R 
Repetitive and 

restricted behaviors 

∆Ct 
vs. 

ADI-R 
Developmental 
abnormalities 

Spearman r -0.34 -0.40 -0.14 -0.22 
95% CI -0.52 - -0.13 -0.58 - -0.20 -0.35 - 0.09 -0.42 - 0.006 

two-sided p-value 0.0017 0.0002 0.23 0.0502 
Is p < Bonferroni 

corrected α? Y Y N N 

Bonferroni-Holm 
corrected p-value 0.009 0.001 NC NC 

Benjamini-
Hochberg 

adjusted p-value 
0.004 0.001 NC NC 

Number of XY 
Pairs 82 82 82 82 

3. ADOS and miR-29a-3p 

 
∆Ct 
vs. 

ADOS 
Communication 

∆Ct 
vs. 

ADOS 
Social interaction 

∆Ct 
vs. 

ADOS 
Imagination 

∆Ct 
vs. 

ADOS 
Repetitive and 

restricted behaviors 
Spearman r -0.39 -0.29 -0.27 -0.15 

95% CI -0.56 - -0.18 -0.48 - -0.07 -0.47 - -0.05 -0.36 - 0.07 
two-sided p-value 0.0003 0.009 0.01 0.17 
Is p < Bonferroni 

corrected α? Y N N N 

Bonferroni-Holm 
corrected p-value 0.002 0.03 NC NC 

Benjamini-
Hochberg 

adjusted p-value 
0.001 0.01 NC NC 

Number of XY 
Pairs 82 82 82 82 

 

Table 4. 3. Correlation between miR-141-3p expression and neuropsychiatric parameters. We chose 
IQ (Section 1), ADI-R (Section 2), and ADOS (Section 3) scores as neuropsychiatric parameters for 
these analyses. Spearman r values from every analysis are reported along with corresponding raw and 
multiple comparison corrected p-values. Only correlations with a p-value ≤ Bonferroni corrected α 
were strictly selected as significant ones. Bonferroni corrected α = 0.05/11 = 0.0045. IQ: Intelligence 
Quotient; VIQ: Verbal Intelligence Quotient; PIQ: Performance Intelligence Quotient; TIQ: Total 
Intelligence Quotient; ADI-R: Autism Diagnostic Interview-Revised; ADOS: Autism Diagnostic 
Observation Schedule; 95% CI: 95% Confidence Interval; NC: Not Computed. 

1. IQ and miR-141-3p 

 ∆Ct 
vs. 

VIQ 

∆Ct 
vs. 

PIQ 

∆Ct 
vs. 

TIQ 
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Spearman r 0.27 0.19 0.22  
95% CI 0.04 - 0.46 -0.04 - 0.40 -0.01 - 0.42  

two-sided p-value 0.02 0.10 0.053  
Is p < Bonferroni 

corrected α? N N N  

Bonferroni-Holm 
corrected p-value 0.04 NC NC  

Benjamini-
Hochberg 

adjusted p-value 
0.02 NC NC  

Number of XY 
Pairs 80 80 80  

2. ADI-R and miR-141-3p 

 
∆Ct 
vs. 

ADI-R 
Social interaction 

∆Ct 
vs. 

ADI-R 
Communication 

∆Ct 
vs. 

ADI-R 
Repetitive and 

restricted behaviors 

∆Ct 
vs. 

ADI-R 
Developmental 
abnormalities 

Spearman r -0.34 -0.41 -0.19 -0.27 
95% CI -0.53 - -0.13 -0.58 - -0.20 -0.39 - 0.04 -0.47 - -0.05 

two-sided p-value 0.0015 0.0002 0.0955 0.0126 
Is p < Bonferroni 

corrected α? Y Y N N 

Bonferroni-Holm 
corrected p-value 0.008 0.002 NC 0.04 

Benjamini-
Hochberg 

adjusted p-value 
0.003 0.001 NC 0.02 

Number of XY 
Pairs 82 82 82 82 

3. ADOS and miR-141-3p 

 
∆Ct 
vs. 

ADOS 
Communication 

∆Ct 
vs. 

ADOS 
Social interaction 

∆Ct 
vs. 

ADOS 
Imagination 

∆Ct 
vs. 

ADOS 
Repetitive and 

restricted behaviors 
Spearman r -0.39 -0.29 -0.37 -0.22 

95% CI -0.56 - -0.18 -0.48 - -0.07 -0.55 - -0.16 -0.42 - 0.001 
two-sided p-value 0.0003 0.009 0.0007 0.045 
Is p < Bonferroni 

corrected α? Y N Y N 

Bonferroni-Holm 
corrected p-value 0.002 0.03 0.004 0.045 

Benjamini-
Hochberg 

adjusted p-value 
0.001 0.01 0.002 0.045 

Number of XY 
Pairs 82 82 82 82 

 

We found a positive correlation (Spearman r = 0.33; two-sided p-value = 0.0027) and a linear 

relationship (Table 4.4) between miR-29a-3p expression levels and VIQ scores (Figure 4.4). We could 

assume that higher saliva levels of miR-29a-3p, which have been observed in ASD patients, are 

potentially associated with deficits in verbal ability. We also found negative correlations and linear 

relationships (Table 4.4) between (i) miR-29a-3p expression levels and ADI-R Social interaction item 

scores (Spearman r = -0.34; two-sided p-value = 0.0017), (ii) miR-29a-3p expression levels and ADI-R 
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Communication item scores (Spearman r = -0.40; two-sided p-value = 0.0002), and (iii) miR-29a-3p 

expression levels and ADOS Communication item scores (Spearman r = -0.39; two-sided p-value = 

0.0003) (Figure 4.4). We could infer that higher saliva levels of miR-29a-3p, typical of ASD patients, 

could be linked to aberrations in social interaction and verbal communication.  
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Figure 4. 4. Correlation between saliva levels of miR-29a-3p and ADOS, VIQ, and ADI-R scores. The 
scatterplots also report the best-fit lines obtained from linear regression analyses. ADOS A represents 
the ADOS Communication item; ADI-R A refers to the ADI-R Social interaction item; ADI-R B to the 
ADI-R Communication one. VIQ: Verbal Intelligence Quotient; ADI-R: Autism Diagnostic Interview-
Revised; ADOS: Autism Diagnostic Observation Schedule; 95% CI: 95% Confidence Interval. 

 

Moreover, we found negative correlations and linear relationships (Table 4.4) between (i) miR-141-3p 

expression levels and ADI-R Social interaction item scores (Spearman r = -0.34; two-sided p-value = 

0.0015), (ii) miR-141-3p expression levels and ADI-R Communication item scores (Spearman r = -0.41; 
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two-sided p-value = 0.0002), (iii) miR-141-3p expression levels and ADOS Communication item scores 

(Spearman r = -0.39; two-sided p-value = 0.0003), and (iv) miR-141-3p expression levels and ADOS 

Imagination item scores (Spearman r = -0.37; two-sided p-value = 0.0007) (Figure 4.5). We could infer 

that higher saliva levels of even miR-141-3p, that have been observed in ASD patients, could be 

potentially associated with defects in social interaction and verbal communication, as shown for miR-

29a-3p, and with deficient creative skills.  
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Figure 4. 5. Correlation between saliva levels of miR-141-3p and both ADOS and ADI-R scores. The 
scatterplots also report the best-fit lines obtained from linear regression analyses. ADI-R A refers to the 
ADI-R Social interaction item; ADI-R B to the ADI-R Communication one; ADOS A represents the 
ADOS Communication item; ADOS C the ADOS Imagination one. VIQ: Verbal Intelligence Quotient; 
ADI-R: Autism Diagnostic Interview-Revised; ADOS: Autism Diagnostic Observation Schedule; 95% 
CI: 95% Confidence Interval. 
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Table 4. 4. Linear regression analyses performed for the eight significant correlations found between 
saliva levels of dysregulated miRNAs and some neuropsychiatric parameters. Bonferroni corrected α 
= 0.05/4 = 0.0125. VIQ: Verbal Intelligence Quotient; ADI-R: Autism Diagnostic Interview-Revised; 
ADOS: Autism Diagnostic Observation Schedule. 

miR-29a-3p 

 
∆Ct 
vs. 

ADOS 
Communication 

∆Ct 
vs. 

VIQ 

∆Ct 
vs. 

ADI-R 
Social interaction 

∆Ct 
vs. 

ADI-R 
Communication 

Best-fit line y = -0.557x + 4.065 y = 5.189x + 65.91 y = -0.910x + 
8.412 

y = -0.925x + 
7.710 

R square 0.090 0.087 0.055 0.078 
p-value 0.006 0.008 0.03 0.011 

Is p < Bonferroni 
corrected α? Y Y N Y 

miR-141-3p 

 
∆Ct 
vs. 

ADI-R 
Social interaction 

∆Ct 
vs. 

ADI-R 
Communication 

∆Ct 
vs. 

ADOS 
Communication 

∆Ct 
vs. 

ADOS 
Imagination 

Best-fit line y = -0.565x + 9.088 y = -0.511x + 8.113 y = -0.265x + 
4.116 

y = -0.145x + 
2.107 

R square 0.141 0.158 0.136 0.113 
p-value 0.0005 0.0002 0.0007 0.002 

Is p < Bonferroni 
corrected α? Y Y Y Y 

 

This correlation analysis confirmed that saliva expression of both miR-29a-3p and miR-141-3p 

correlated with crucial traits for the clinical diagnosis of ASD. We assume that these miRNAs could 

prove to be useful to strengthen the behavior-based diagnosis of ASD, by supporting the recognition of 

deficits in social interaction and verbal communication. 

4.3.4. Functional analyses of validated targets of miR-29a-3p and miR-141-3p 

By searching on miRTarBase database for validated targets of the two dysregulated miRNAs in ASD 

saliva, we retrieved 106 and 58 targets, whose validation was based on strong evidence, for miR-29a-

3p and miR-141-3p, respectively (Table 4.5). These miRNAs share two common targets: KEAP1 (kelch 

like ECH associated protein 1) and PTEN (phosphatase and tensin homolog). 

 

Table 4. 5. Validated targets of miR-29a-3p and miR-141-3p retrieved by miRTarBase database. Total 
number and gene names of the validated targets for each differentially expressed miRNA in ASD saliva 
are reported. Targets in common between the two miRNAs are written in bold type. 

DE miRNA Total number of 
validated targets Gene names of validated targets 

miR-29a-3p 106 
ABL1, ADAM12, ADAMTS9, AHR, AKT2, AKT3, ALDH5A1, 
ATG9A, BACE1, BCL2, BCL7A, CACNA1C, CALCR, 
CCND1, CCND2, CCNT2, CD276, CD93, CDC42, CDC7, 
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CDK2, CDK4, CDK6, CEACAM6, CLDN1, COL10A1, 
COL1A2, COL3A1, COL4A1, COL4A2, COL5A2, CPEB3, 
CPEB4, CYP2C19, DICER1, DKK1, DNMT1, DNMT3A, 
DNMT3B, ELN, FBN1, FGA, FGB, FGG, FOXO3, FSTL1, 
GLUL, GPR85, GSK3B, HBP1, HMGCR, IFNAR1, IGF1, 
IMPDH1, ITGA11, ITGA6, ITGB1, ITIH5, KDM5B, KEAP1, 
KLF4, KREMEN2, LAMC2, LOX, LPL, MCL1, MMP2, MUC1, 
MYC, MYCN, NASP, NAV3, NFIA, NMI, PDGFRB, PER1, 
PIK3R1, PPM1D, PPP1R13B, PTEN, PXDN, QKI, RAN, 
RASGRP1, RNASEL, ROBO1, S100B, SAPCD2, SERPINB9, 
SERPINH1, SETDB1, SFRP2, SLC22A7, SPARC, SRGAP2, 
TDG, TET1, TET2, TET3, TFEB, TNFAIP3, TRAF4, TRIM68, 
VDAC1, VEGFA, ZFP36 

miR-141-3p 58 

ACVR2B, BAP1, BRD3, CDC25A, CDC25C, CDYL, CLOCK, 
CTBP2, DLX5, E2F3, EIF4E, ELMO2, ERBIN, HDGF, HIPK2, 
HNRNPD, HOXB5, IGF1R, KEAP1, KLF11, KLF12, KLF5, 
KLHL20, MALAT1, MAP4K4, MAPK14, MAPK9, NR0B2, 
PAPPA, PHLPP1, PHLPP2, PPARA, PTEN, PTPRD, RASSF2, 
RIN2, SEPT7, SFPQ, SHC1, STAT4, STAT5A, STK3, TAZ, 
TCF7L1, TFDP2, TGFB2, TIAM1, TM4SF1, TRAPPC2B, 
UBAP1, VAC14, WDR37, YAP1, YWHAG, ZEB1, ZEB2, 
ZFPM2, ZMPSTE24 

 

In order to investigate the molecular functions and the potential etiological role of these two miRNAs 

in ASD, we performed functional enrichment analyses of their target genes using GO, DO, and KEGG 

gene annotation databases. 

Interestingly, genes controlled by miR-29a-3p (i) showed some neuronal specific cellular components 

(i.e., myelin sheath, postsynapse, dendritic spine, and neuron spine; PTEN was one of the targets 

determining the enrichment for all these terms) (Table 4.6, Figure S4.1C), (ii) were involved in various 

mechanisms taking place within the nervous system (i.e., dopaminergic neuron differentiation, 

regulation of neuron apoptotic process, pallium development, myelination, dendritic spine development, 

axon regeneration, and modulation of chemical synaptic transmission; PTEN was one of the targets 

determining the enrichment for all these terms except for the first two) (Table 4.6, Figure S4.1A), and 

(iii) were components of many pathways either crucial for neural development or known to be 

dysregulated in ASD (i.e., neurotrophin signaling pathway, axon guidance, and PI3K-Akt, Hedgehog, 

Wnt, and mTOR signaling pathways) (Table 4.6, Figure S4.2A). Also, it is worth noting that Ehlers-

Danlos syndrome and methionine degradation were one of the over-represented DO terms and one of 

the over-represented KEGG modules in this list of target genes, respectively (Table 4.6, Figures S4.2B 

and S4.3). 

 

Table 4. 6. Over-represented GO, DO, and KEGG terms associated with genes controlled by miR-29a-
3p. Selection of interesting illustrative over-represented terms. For a more complete (but still filtered) 
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output see Figures S4.1-3. Term database, ID, and description, corresponding BH adjusted p-value 
generated by the hypergeometric test, Gene Ratio and Background Ratio values, and list of annotated 
genes are reported for all the most interesting over-represented terms associated with miR-29a-3p 
target genes. It is worth noting that PTEN (in bold type) is a target gene shared with miR-141-3p. Gene 
Ratio: the ratio of number of genes of interest that are annotated with a certain term from the database 
used to perform the analysis to number of genes of interest that are annotated with terms from the same 
database. Background Ratio: the ratio of number of genes in the genome that are annotated with a 
certain term from the database used to perform the analysis to number of genome genes that are 
annotated with terms from the same database. BH: Benjamini-Hochberg; GO: Gene Ontology; DO: 
Disease Ontology; BP: Biological Process; CC: Cellular Component; KEGG: Kyoto Encyclopedia of 
Genes and Genomes. 

Annotation 
Database Term ID Term description 

BH 
adjusted  
p-value 

Gene 
Ratio 

Backgrou
nd Ratio 

Annotated  
Target Genes 

KEGG 
Pathway hsa04151 PI3K-Akt 

signaling pathway 3.90E-13 25/77 352/7430 

CDK6, COL4A2, 
COL4A1, MCL1, 
BCL2, PIK3R1, 
ITGA11, PTEN, 

CCND2, VEGFA, 
AKT2, CDK2, 

FOXO3, LAMC2, 
ITGA6, PDGFRB, 
CCND1, CDK4, 

IGF1, AKT3, 
ITGB1, GSK3B, 
IFNAR1, MYC, 

COL1A2 
KEGG 
Module M00676 PI3K-Akt 

signaling 1.66E-05 4/16 13/1522 PIK3R1, AKT2, 
FOXO3, AKT3 

KEGG 
Pathway hsa04722 Neurotrophin 

signaling pathway 0.0002 8/77 119/7430 

BCL2, PIK3R1, 
CDC42, ABL1, 
AKT2, FOXO3, 
AKT3, GSK3B 

KEGG 
Module M00035 Methionine 

degradation 0.0003 3/16 11/1522 DNMT3A, 
DNMT3B, DNMT1 

GO BP GO:1904338 

regulation of 
dopaminergic 

neuron 
differentiation 

0.0007 3/106 10/17653 SFRP2, DKK1, 
GSK3B 

GO BP GO:0021543 pallium 
development 0.001 7/106 163/17653 

CDK6, RAN, 
PTEN, COL3A1, 

SRGAP2, ROBO1, 
GSK3B 

GO BP GO:0071542 
dopaminergic 

neuron 
differentiation 

0.001 4/106 37/17653 SFRP2, DKK1, 
VEGFA, GSK3B 

DO DOID:13359 Ehlers-Danlos 
syndrome 0.002 3/92 12/8007 COL3A1, 

COL5A2, COL1A2 
KEGG 

Pathway hsa04340 Hedgehog 
signaling pathway 0.004 4/77 47/7430 BCL2, CCND2, 

CCND1, GSK3B 

GO CC GO:0043209 myelin sheath 0.006 6/106 164/18698 
BCL2, GLUL, 

CDC42, PTEN, 
VDAC1, ITGB1 

GO BP GO:0042552 myelination 0.006 5/106 113/17653 S100B, DICER1, 
PTEN, AKT2, QKI 

KEGG 
Pathway hsa04360 Axon guidance 0.007 7/77 175/7430 PIK3R1, CDC42, 

ABL1, SRGAP2, 
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ITGB1, ROBO1, 
GSK3B 

GO BP GO:0031641 regulation of 
myelination 0.009 3/106 35/17653 S100B, DICER1, 

PTEN 

GO CC GO:0098794 postsynapse 0.011 9/106 450/18698 

CPEB3, CPEB4, 
CDC42, PTEN, 
ABL1, SRGAP2, 

ITGB1, 
CACNA1C, 

GSK3B 

KEGG 
Pathway hsa04310 Wnt signaling 

pathway 0.011 6/77 146/7430 
SFRP2, DKK1, 

CCND2, CCND1, 
GSK3B, MYC 

KEGG 
Pathway hsa04150 mTOR signaling 

pathway 0.013 6/77 151/7430 
PIK3R1, PTEN, 

AKT2, IGF1, 
AKT3, GSK3B 

GO BP GO:0060996 dendritic spine 
development 0.014 4/106 90/17653 CPEB3, CDC42, 

PTEN, SRGAP2 

GO BP GO:0031103 axon regeneration 0.016 3/106 45/17653 BCL2, PTEN, 
KLF4 

GO CC GO:0043197 dendritic spine 0.016 5/106 153/18698 
CPEB4, CDC42, 
PTEN, SRGAP2, 

ITGB1 

GO CC GO:0044309 neuron spine 0.016 5/106 155/18698 
CPEB4, CDC42, 
PTEN, SRGAP2, 

ITGB1 

GO BP GO:0043525 

positive 
regulation of 

neuron apoptotic 
process 

0.018 3/106 48/17653 MCL1, CDC42, 
FOXO3 

GO BP GO:0050804 
modulation of 

chemical synaptic 
transmission 

0.022 7/106 335/17653 

BACE1, DKK1, 
S100B, GLUL, 
CPEB3, PTEN, 

ABL1 

GO BP GO:0048679 regulation of axon 
regeneration 0.039 2/106 25/17653 PTEN, KLF4 

 

Importantly, even genes controlled by miR-141-3p (i) were involved in nervous system’s mechanisms 

(i.e., presynaptic membrane assembly, regulation of neuron projection regeneration and dendrite 

morphogenesis, hippocampus development; PTEN was one of the targets determining the enrichment 

for all these terms) (Table 4.7, Figure S4.4A), and (ii) were components of many interconnected crucial 

pathways (i.e., PI3K-Akt, Wnt, Hippo, JAK-STAT, and FoxO signaling pathways) (Table 4.7, Figures 

S4.4 and S4.5). 

 

Table 4. 7. Over-represented GO and KEGG terms associated with genes regulated by miR-141-3p.  
Selection of interesting illustrative over-represented terms. For a more complete (but still filtered) 
output see Figures S4.4-5. Term database, ID, and description, corresponding BH adjusted p-value 
generated by the hypergeometric test, Gene Ratio and Background Ratio values, and list of annotated 
genes are reported for all the most interesting over-represented terms associated with miR-141-3p 
target genes. It is worth noting that PTEN (in bold type) is a target gene shared with miR-29a-3p. For 
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in-depth description of the column names see Table 4.6 legend. BH: Benjamini-Hochberg; GO: Gene 
Ontology; BP: Biological Process; KEGG: Kyoto Encyclopedia of Genes and Genomes.  

Annotation 
Database Term ID Term 

description 

BH 
adjusted 
p-value 

Gene 
Ratio 

Background 
Ratio 

Annotated 
Target Genes 

KEGG 
Pathway hsa04392 

Hippo 
signaling 
pathway - 
multiple 
species 

0.005 3/38 29/7430 STK3, RASSF2, 
YAP1 

KEGG 
Pathway hsa04068 

FoxO 
signaling 
pathway 

0.005 5/38 132/7430 
TGFB2, PTEN, 

MAPK14, 
MAPK9, IGF1R 

GO BP GO:0030111 
regulation of 
Wnt signaling 

pathway 
0.008 7/57 344/17653 

ZEB2, DLX5, 
STK3, 

MAPK14, 
TCF7L1, YAP1, 

TIAM1 

KEGG 
Pathway hsa04390 

Hippo 
signaling 
pathway 

0.009 5/38 154/7430 
STK3, TGFB2, 

YWHAG, 
TCF7L1, YAP1 

GO BP GO:0097105 
presynaptic 
membrane 
assembly 

0.020 2/57 10/17653 PTEN, PTPRD 

GO BP GO:0070571 

negative 
regulation of 

neuron 
projection 

regeneration 

0.028 2/57 15/17653 PTEN, 
MAP4K4 

KEGG 
Module M00683 Hippo 

signaling 0.037 2/13 16/1522 STK3, YAP1 

KEGG 
Module M00684 JAK-STAT 

signaling 0.037 2/13 19/1522 STAT4, 
STAT5A 

GO BP GO:0021766 hippocampus 
development 0.040 3/57 75/17653 ZEB2, PTEN, 

PHLPP2 

KEGG 
Pathway hsa04151 

PI3K-Akt 
signaling 
pathway 

0.044 6/38 352/7430 

PTEN, EIF4E, 
YWHAG, 
PHLPP1, 
PHLPP2, 
IGF1R 

GO BP GO:0048814 
regulation of 

dendrite 
morphogenesis 

0.046 3/57 83/17653 PTEN, PTPRD, 
TIAM1 

 

4.3.5. Saliva levels of miR-29a-3p and miR-141-3p in the discrimination of ASD patients 

We used ΔCt values for miR-29a-3p and miR-141-3p to perform classical univariate ROC curve 

analyses. The univariate ROC plots revealed an AUC of 0.72 for miR-29a-3p (p-value = 0.03) and an 

AUC of 0.77 for miR-141-3p (p-value = 0.00005) (Figure 4.6, Figure S4.6).  
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Figure 4. 6. Classical univariate ROC curve analyses for miR-29a-3p and miR-141-3p. Each point on 
the ROC curves represents a sensitivity/specificity pair corresponding to a particular decision threshold 
(ΔCt value cut-off). Red circles on the curves refer to the sensitivity/specificity pairs with the highest 
Youden index J. AUC: Area under the ROC curve; 95% CI: 95% Confidence Interval. 

 

We used ∆Ct value cut-offs corresponding to the sensitivity/specificity pair with the highest Youden 

index J for every computed ROC curve to perform a blind diagnosis on all the 82 analyzed samples 

(Figure 4.7).  
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Figure 4. 7. The potential use of saliva miR-29a-3p and miR-141-3p as classifiers for ASD. The graphs 
show the distribution of ∆Ct values of all the 82 analyzed samples, for which we already had a clinical 
diagnosis. We used data from classical univariate ROC curve analyses to perform a blind diagnosis of 
all study participants. As regards miR-29a-3p, the ∆Ct ≤ 1.473 criterion divides ASD patients from NCs 
and determines the correct discrimination of 28/54 ASD patients and 25/28 NCs. As concerns miR-141-
3p, the ∆Ct ≤ 2.636 criterion divides ASD patients from NCs and determines the correct discrimination 
of 27/54 ASD patients and 26/28 NCs. 

 

Then, we built a logistic regression model for both miRNAs and we tested those predictive models 

through CV and permutation testing. 100-time repeated random sub-sampling CV was used to test the 

performance of the logistic regression models. MiR-29a-3p performed at a discrete level for the 

comparison ASD vs NC, with an average AUC of 0.72, a sensitivity of 66.67%, and a specificity of 

57.14% (Figure 4.8.1A-B). MiR-141-3p also performed at a good level in discriminating ASD patients, 

with an average AUC of 0.76, a sensitivity of 62.96%, and a specificity of 67.86% (Figure 4.8.2A-B). 
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CV results demonstrated the general applicability of these predictive models. 100-time repeated 

permutation tests on the performance measure AUC were carried out to validate the structure of these 

models. Permutation testing results were significant and quite stable in different runs for all the models 

tested (Figure 4.8.1C and .2C).  
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Figure 4. 8. Individual miR-29a-3p and miR-141-3p in the discrimination of ASD patients. (1) The 
graphs refer to miR-29a-3p. (2) The graphs refer to miR-141-3p. (A) Average ROC curve from 100-time 
repeated random sub-sampling CV of the built logistic regression model. (B) Average predicted class 
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probabilities (x-axis) of each sample (y-axis) from the 100 CV iterations. Probability scores more than 
0.5 belong to the ASD group, those less than 0.5 belong to the NC group. Incorrectly classified subjects 
are identified by their ID number. (C) Results from the permutation tests on the model performance 
measure AUC. Average ROC curve and corresponding p-value are reported. AUC: Area under the ROC 
curve; 95% CI: 95% Confidence Interval. 

 

Finally, to evaluate the performance of these two miRNAs if they were used as combined classifiers for 

ASD, we built a logistic regression model combining them and we tested it through CV and permutation 

testing. MiR-29a-3p and miR-141-3p when used in combination performed at a better level than when 

used individually in the discrimination of ASD patients, with an average AUC of 0.74, a sensitivity of 

64.81%, and a specificity of 67.86% (corresponding to a better sensitivity/specificity pair) (Figure 

4.9.A-B). Permutation testing results were significant and quite stable in different runs for this combined 

model (Figure 4.9.C).  
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Figure 4. 9. Combined miR-29a-3p and miR-141-3p in the discrimination of ASD patients. The graphs 
refer to the combination of two potential classifiers: miR-29a-3p and miR-141-3p. (A) Average ROC 
curve from 100-time repeated random sub-sampling CV of the built logistic regression model. (B) 
Average predicted class probabilities (x-axis) of each sample (y-axis) from the 100 CV iterations. 
Probability scores more than 0.5 belong to the ASD group, those less than 0.5 belong to the NC group. 
Incorrectly classified subjects are identified by their ID number. (C) Results from the permutation tests 
on the model performance measure AUC. Average ROC curve and corresponding p-value are reported. 
AUC: Area under the ROC curve; 95% CI: 95% Confidence Interval. 
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These data showed that combined saliva miR-29a-3p and miR-141-3p could be helpful in the 

discrimination of ASD patients and could support ASD behavior-based diagnostic process.  

 

4.4. Discussion 

Recent studies suggest saliva as the ideal body fluid for the identification of potential ASD biomarkers 

given its easy and comfortable sampling and its richness as a source of different types of molecules 

(Galiana-Simal et al., 2018). The close relationship between salivary glands and nervous system 

(Ferreira and Hoffman, 2013) suggests that molecules secreted in saliva may reflect both normal and 

pathological conditions of the nervous system. Stability, general consistency of expression among 

individuals, and condition-specific expression profile make circulating miRNAs appropriate diagnostic 

biomarkers (Weiland et al., 2012; Larrea et al., 2016). We hypothesized that processed saliva profile of 

circulating miRNAs may contain specific fingerprints for ASD: these could help in the investigation of 

the molecular basis of ASD and be used as supportive non-invasive means to the clinical behavior-based 

diagnosis of this disorder. 

By using NanoString nCounter technology, we profiled the expression of 827 circulating miRNAs in 

processed saliva from twenty-three ASD patients and twelve NCs and we selected ten miRNAs as 

dysregulated in ASD saliva (Figure 4.1, Table 4.1). Through our validation expression analysis on fifty-

four ASD patients and twenty-eight NCs, we identified both miR-29a-3p and miR-141-3p as 

upregulated in saliva from ASD patients compared to NCs (Figure 4.2). Interestingly, contrary to results 

from profiling analysis, we found miR-29a-3p to be slightly upregulated, rather than downregulated, in 

ASD saliva: this observation confirmed the importance of data validation in larger cohorts (Witwer, 

2015). Moreover, miR-16-5p showed decreased saliva expression levels in ASD compared to NC only 

in the old subgroup of study participants (Figure 4.3). 

None of these miRNAs has ever been observed as dysregulated in either human ASD tissues or body 

fluids. According to expression data from the Human miRNA Tissue Atlas (Ludwig et al., 2016), miR-

29a-3p is highly expressed in brain, meninges (arachnoid mater and dura mater), nerves, spinal cord, 

muscle, prostate, and thyroid, while miR-141-3p is highly expressed in colon, lung, skin, and thyroid, 

and just lowly expressed in brain. MiR-16-5p is highly expressed in blood vessels, muscle, and thyroid, 

whereas it is moderately expressed in brain, nerves, and spinal cord. According to RNA-seq data on 

miRNAs across the developing human brain (from infancy to adolescence) (Ziats and Rennert, 2014), 

miR-29a-3p and miR-16-5p are expressed at high read levels (> 1000) in multiple brain regions, 

including cerebellum, dorsolateral PFC (prefrontal cortex), ventrolateral PFC, medial PFC, orbitofrontal 
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PFC, and hippocampus, throughout infancy and childhood, while miR-141-3p shows very low read 

levels (< 1000) in these during developmental time. Moreover, in contrast to miR-29a-3p and miR-16-

5p, that are not DE both within and between brain regions over developmental time, miR-141-3p is 

slightly upregulated in PFC compared to the hippocampus during late childhood and adolescence (Ziats 

and Rennert, 2014). 

MiR-29a-3p function has mainly been investigated in human diseases like cancer (Lian et al., 2018; Cui 

et al., 2018; Catanzaro et al., 2017; He et al., 2017; Li et al., 2017; Wang et al., 2017), diabetes mellitus 

and diabetic kidney disease (Snowhite et al., 2017; Widlansky et al., 2018; Assmann et al., 2018), axial 

spondyloarthritis (Prajzlerová et al., 2017), hypothyroidism (Tokić et al., 2018), and Friedreich’s ataxia 

(Dantham et al., 2018), in studies proving its onco-suppressor, inflammatory, immunoregulatory, and 

neurodegenerative role. In some of these diseases, its dysregulation has been observed in body fluids, 

such as either serum or plasma (Lian et al., 2018; Snowhite et al., 2017; Prajzlerová et al., 2017; 

Dantham et al., 2018). In mice model of ALS (amyotrophic lateral sclerosis), miR-29a-3p expression in 

brain and spinal cord is high: its in vivo CNS knockdown increases ALS mice lifespan (Nolan et al., 

2014). On the contrary, it has been observed that miR-29a/b-1 knockout mice develop a progressive 

disorder characterized by locomotor impairment and ataxia and show smaller Purkinje cells, with less 

dendritic arborization and synaptic formation, demonstrating the important role that this miRNA cluster 

exerts in the brain (Papadopoulou et al., 2015). Moreover, in vivo mice brain-specific knockdown of 

miR-29a/b-1 determines massive cell death in large regions of the hippocampus and cerebellum and 

causes an ataxic phenotype, confirming the role of these miRNAs in neuronal survival and their 

involvement in several neurodegenerative disorders, including AD (Alzheimer’s disease), Huntington’s 

disease, and spinocerebellar ataxias, where they are usually downregulated and cannot act as efficient 

neuroprotectors (Roshan et al., 2014). Finally, miR-29a-3p has been proposed as a promising therapeutic 

target for CNS injury since its upregulation promotes neuronal differentiation and decreases astrocyte 

differentiation of neural stem cells derived from rat embryonic cortex via targeting PTEN (Shi et al., 

2018). MiR-141-3p function has mainly been investigated in many human diseases and mechanisms, 

like cancer (Cui et al., 2018; Ishibashi et al., 2018; Zheng et al., 2018; Zhang et al., 2018; Wang et al., 

2018; Huang et al., 2017; Ju et al., 2017), renal development (Zhang et al., 2018), age-related macular 

degeneration (Ayaz and Dinç, 2018), PD (Parkinson’s disease) (Tolosa et al., 2018), gut microbiome 

balance (Moloney et al., 2018), prostatitis (Chen et al., 2018), and diabetic kidney disease (Li et al., 

2017). Its dysregulation has been observed in body fluids, such as either serum or plasma, during 

pregnancy (Chim et al., 2008), in PD (Dong et al., 2016), in primary biliary cirrhosis (Tan et al., 2014), 

and in many tumors (Wang et al., 2017; Arab et al., 2017; Halvorsen et al., 2017). It has also been 

proposed as a feces biomarker of microbial fluctuations along with gut pathology in the intestine 

(Moloney et al., 2018). Moreover, miR-141 has been identified in mouse neural stem cells as a fine-

tuning regulator of the expression patterns of FET proteins, a family of RBPs (RNA-binding proteins) 
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with a well-documented role in neurodegenerative diseases, during the differentiation of neuronal cells, 

a crucial mechanism for proper cortical development (Svetoni et al., 2017). Finally, middle-aged rats, 

displaying declined learning ability and increased APP (amyloid precursor protein) and BACE1 (β-

secretase) protein expression in the forebrain cortex, typical signs of aging, have higher expression levels 

of miR-141-3p, a BACE1 modulator, in hippocampus (Che et al., 2014). Interestingly, miR-29a-3p and 

miR-141-3p exert very similar molecular functions in inflammation, cortical development, and 

neurodegeneration. Similarly, miR-16-5p has been identified as dysregulated in CSF-derived exosomes 

of young-onset AD patients, proving a possible involvement of this miRNA in neurodegenerative 

progression (McKeever et al., 2018). In addition, this miRNA is essential for the regulation of BDNF 

(brain derived neurotrophic factor)-induced dendritogenesis during neural development (Antoniou et 

al., 2018) and it can also be released by astrocytes in order to negatively regulate target neurons’ synaptic 

stability and neuronal excitability during neuroinflammation (Chaudhuri et al., 2018). Therefore, there 

is strong evidence suggesting a potential role for these brain miRNAs even in neurodevelopment. 

Finally, miR-16-5p has been identified as one of the most abundantly expressed miRNAs in human 

whole saliva from healthy donors (Patel et al., 2011). Intriguingly, we confirmed this miRNA as 

downregulated in ASD compared to NC only in the old subgroup of study participants: however, this 

promising result needs to be validated on larger groups of samples. 

We found the expression levels of both miR-29a-3p and miR-141-3p to be correlated with 

neuropsychiatric parameters that are clinically used to evaluate young ASD patients for their verbal, 

communicative, and social abilities (Figures 4.4-5). Higher saliva levels of these miRNAs, which we 

observed in ASD samples belonging to the validation set, could be potentially associated with defects 

in verbal communication and social interaction. These findings show that saliva expression analysis of 

both miR-29a-3p and miR-141-3p could strengthen the clinical diagnostic process of ASD, especially 

when assessing ASD symptoms and deficits in the domain of social communication and social 

interaction or when observing simultaneous language impairment in young patients. 

Intriguingly, in a rat study investigating the effect of social isolation on oral mucosal healing, socially 

isolated rats persistently exhibit higher levels of miR-29 family members in their oral tissues (Yang et 

al., 2013). Interestingly, in a mouse study investigating the effect of social isolation on recovery after 

stroke, miR-141-3p levels are increased in frontal cortex from post-stroke isolated animals: post-stroke 

inhibition of this miRNA improves mortality and neurological deficits, and decreases infarct volumes, 

being particularly effective in aged mice (Verma et al., 2018). These two studies confirm an interesting 

potential link between defected social interaction and overexpression of both miR-29a-3p and miR-141-

3p. 

Through functional analyses on validated target genes of these two dysregulated miRNAs, we observed 

that both genes controlled by miR-29a-3p and those regulated by miR-141-3p partly exert a role in 
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maintaining the structural and functional integrity of the nervous system and in regulating its 

development; in addition, they act as components of many pathways both linked to neural development 

and associated to ASD (Tables 4.6-7). In particular, PTEN, one of the two shared targets between miR-

29a-3p and miR-141-3p (Table 4.5), is directly involved in pallium and hippocampus development, axon 

regeneration, myelination, dendrite morphogenesis, and synaptic function, and it is a central unit in 

PI3K-Akt, mTOR, and FoxO signaling pathways (Tables 4.6-7). 

The human PTEN gene encodes a lipid phosphatase with specificity towards PIP3 (phosphatidylinositol-

3,4,5- triphosphate), inhibiting PI3K (phosphoinositide-3-kinase) and downstream AKT (protein kinase 

B) signaling pathways and acting as a negative regulator of cell proliferation. PTEN has been established 

as an ASD susceptibility gene. Germline mutation frequently occurs in this gene in patients diagnosed 

with PTEN Hamartoma Tumor Syndrome (PHTS). PHTS individuals show macrocephaly, benign 

growth of multiple tissues, and increased tumor risk (Hansen-Kiss et al., 2017). Intriguingly, autistic 

features are found in PHTS individuals with macrocephaly and carrying germline PTEN mutations 

reducing protein stability and activity (Hansen-Kiss et al., 2017; Wong et al., 2018). Similarly, patients 

with macrocephaly and developmental delay and/or ASD also show mutations in MTOR (mechanistic 

target of rapamycin kinase), PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

alpha), and PPP2R5D (protein phosphatase 2 regulatory subunit B’, delta) genes, confirming the role of 

the whole PI3K-AKT-mTOR pathway in these dysmorphic features and neurodevelopmental issues 

(Yeung et al., 2017). Knock-in mouse models carrying PTEN mutations altering its function and 

subcellular localization show increased brain weight, cell number, neuronal hypertrophy, and behavioral 

deficits associated with ASD: it has been demonstrated that nuclear wild-type PTEN alone is sufficient 

to regulate soma size and rescue the neuronal hypertrophy (Fricano-Kugler et al., 2017). Recent 

evidence has revealed that PTEN acts as a synaptic player during plasticity events, in addition to 

controlling cell proliferation and neuronal growth during development (Knafo and Esteban, 2017). 

Imbalance in excitation/inhibition (E/I imbalance), changes in intrinsic neuronal excitability, local hyper 

connectivity, and alterations in synaptic plasticity are the most common neuronal phenotypes seen in 

mice lacking PTEN, consistently with dysfunctional synapses or networks associated with ASD (Knafo 

and Esteban, 2017). Finally, FOXO (forkhead box proteins O) proteins, that have been found to also 

regulate neuronal polarization and positioning, synaptic function, and memory consolidation, are 

downstream effectors of the PI3K-Akt pathway. FOXO has been predicted to be one of the 

transcriptional factors responsible for transcriptional changes observed in neural progenitors and 

neurons obtained from multiple lines of iPSCs (induced pluripotent stem cells) derived from patients 

suffering from Timothy syndrome, a monogenic condition with high penetrance for ASD (Tian et al., 

2014). Therefore, all these findings prove that we have identified two dysregulated miRNAs in ASD 

saliva that could indirectly control crucial mechanisms and pathways for this disorder. 
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Interestingly, we found Ehlers-Danlos syndrome (EDS) and methionine degradation as one of the over-

represented DO terms and one of the over-represented KEGG modules in the list of miR-29a-3p target 

genes, respectively (Table 4.6).  

EDS is the name used to refer to a rather large and heterogeneous group of inherited disorders affecting 

the connective tissue and characterized by joint hypermobility (GJH, Generalized Joint Hypermobility), 

myalgia, skin problems, sleep apnea, pneumothorax, and cardiovascular disease. In a Swedish 

nationwide population-based matched cohort study, it has been observed that EDS individuals are at 

increased risks of being diagnosed with psychiatric disorders, with ASD having the highest risk ratio 

among all of the tested disorders (Cederlöf et al., 2016). In addition, EDS individuals often present with 

immune- and endocrine-mediated conditions and both immune and endocrine dysregulation seem to 

have a role in the etiology of ASD. A recent study demonstrated that women suffering from both ASD 

and GJH, a major feature of EDS, manifest more immune- and endocrine-mediated conditions than those 

just affected by ASD, showing a potential etiological relationship between ASD, GJH, and EDS 

(Casanova et al., 2018).  

Abnormal metabolism of methionine and homocysteine has already been associated with ASD by many 

studies. ASD children have significantly lower baseline plasma concentrations of methionine, SAM (S-

adenosylmethionine), homocysteine, cystathionine, cysteine, and total glutathione, and significantly 

higher concentrations of SAH (S-adenosylhomocysteine), adenosine, and oxidized glutathione; this 

metabolic profile is consistent with impaired capacity for methylation and increased vulnerability to 

oxidative stress in these patients (James et al., 2004). Moreover, ASD patients show higher levels of 

homocysteine in urine that are positively correlated with deficits in communication (Puig-Alcaraz et al., 

2015) and lower urinary levels of methionine (Li et al., 2018). To sum up, convincing evidence suggests 

that miR-29a-3p could indirectly play a role in ASD immune, endocrine, and metabolic impairments. 

Through ROC curve analyses, we proved that saliva levels of both miR-29a-3p and miR-141-3p could 

be used in the discrimination of ASD patients from NCs because of their very high specificity (Figures 

4.6-7). In particular, these curves indicated miR-141-3p to have the best discriminating potential as ASD 

biomarker (Figure 4.6). However, it was essential to evaluate the actual performance of the 

corresponding predictive models of these two miRNAs through CV and permutation testing (Figure 

4.8). In fact, through these analyses, we showed that the two models based on the individual expression 

of the saliva dysregulated miRNAs would perform at a very similar level and would have a less 

optimistic specificity in discriminating ASD patients. Finally, we evaluated the performance of miR-

29a-3p and miR-141-3p when used as combined classifiers for ASD by building a logistic regression 

model based on their combined expression levels in saliva: we demonstrated that, when used in 

combination, miR-29a-3p and miR-141-3p performed at a better level than when used individually in 

the discrimination of ASD patients (Figure 4.9). These results, together with those from the correlation 
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analyses, make us suggest that saliva miR-29a-3p and miR-141-3p could serve as potential non-invasive 

biomarkers to support the behavior-based diagnosis of ASD. However, further studies on larger cohorts 

and on participants of lower age would be necessary in order to better test the discriminatory power of 

these two miRNAs and prove their value in supporting early diagnosis of ASD. 

Our study has some limitations that are typical of those proposing circulating miRNAs as biomarkers. 

The first one regards diagnostic specificity. As reported above, both circulating miR-29a-3p and miR-

141-3p have already been associated with multiple pathological conditions. The second issue is 

reproducibility. There is little overlap between circulating miRNAs reported as biomarkers from 

independent investigators and this challenges their clinical utility. For example, just two miRNAs (miR-

27a-3p in Mundalil Vasu et al., 2014 and Hicks et al., 2016; miR-140-3p in Hicks et al., 2016 and 

Cirnigliaro et al., 2017) were found as consistently dysregulated in independent studies on body fluids 

from ASD patients.  None of the three other independent studies on miRNA expression in human ASD 

liquid biopsies (discussed below) is consistent with this saliva one. That highlights the importance of 

data validation in larger cohorts and standardization of experimental conditions (Witwer, 2015).  

Our study is the fourth high-throughput one profiling miRNAs in a body fluid from ASD patients in 

order to discover some potential biomarkers. It is also the first one characterizing circulating miRNAs 

in supernatant saliva from ASD patients, validating profiling data by TaqMan assay, a probe-based 

system designed to specifically detect the expression of miRNAs of interests. 

The first study (Mundalil Vasu et al., 2014) was carried out on serum from a Japanese cohort of 55 ASD 

patients and 55 unaffected controls. The authors identified and validated 13 circulating miRNAs as 

dysregulated in serum from ASD patients and showed the accurate predictive power of 5 of them in 

discriminating ASD patients (Mundalil Vasu et al., 2014). Our ASD and NC sample size is slightly 

smaller than the one from this work, but we have used a hybridization-based technology that allowed us 

to profile the expression of many more miRNAs than the 139 that the authors analyzed. None of 

circulating miRNAs from this study matches those from our saliva profile. However, functional 

enrichment analyses from both studies (Mundalil Vasu et al., 2014; this chapter) demonstrated over-

representation of the same neurological pathways, such as axon guidance, Hedgehog signaling, Wnt 

signaling, and mTOR signaling, observed for miR-29a-3p target genes, and MAPK signaling and ErbB 

signaling, observed for miR-141-3p target genes. This observation suggests that discrepancies can be 

explained with differences in pre-analytic variables, such as genetic structure of studied populations, 

cohort composition, type of sample used, sample processing, validation technique, and data 

normalization (Witwer, 2015). In particular, ethnicity of participants, cohort size, and miRNA panel and 

intercalating dye-based system used may have determined the inconsistencies observed. However, these 

can mainly be explained with the fact that the studies (Mundalil Vasu et al., 2014; this chapter) 

investigated two different human biofluids (processed serum and processed saliva, respectively). 
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The second paper (Hicks et al., 2016) describes a pilot study on whole saliva from a US cohort of 24 

ASD patients and 21 unaffected controls. By RNA-sequencing, the authors identified 14 miRNAs as 

dysregulated in saliva from ASD patients and showed the discriminative accuracy of this molecular 

signature (Hicks et al., 2016). Our ASD and NC sample size is much bigger than the one from this work. 

In addition, sequencing data from it have not been validated through miRNA-specific qPCR assays. 

None of dysregulated miRNAs from this study matches those from our supernatant saliva profile. 

Nevertheless, consistently with our results, their functional enrichment analysis detected significant 

over-representation of target genes related to neuron and axon projection and transcriptional activation, 

observed for both miR-29a-3p and miR-141-3p target genes (Hicks et al., 2016; this chapter). 

Discrepancies between this work and our study can mainly be explained, other than with all the factors 

listed above, with the fact that they investigated two different types of saliva samples, whole and 

processed ones, and therefore, they looked at incomparable compartments, with or without a cellular 

contribution, respectively. 

The third study (Cirnigliaro et al., 2017, or Chapter 3), that was also carried by our research group, 

analyzed serum samples from a Caucasian cohort of 30 ASD patients and 25 unaffected controls. In that 

study, through single TaqMan assays, we validated miR-140-3p as upregulated in serum from ASD 

patients compared to NCs. None of circulating miRNAs from that serum study matches those from this 

saliva profile. However, functional enrichment analyses from both studies (Cirnigliaro et al., 2017, or 

Chapter 3; this chapter) demonstrated over-representation of the same neurological biological processes 

and pathways, such as regulation of synaptic function, neuron differentiation, dendrite development, and 

Wnt signaling, observed for both miR-29a-3p and miR-141-3p target genes, and response to nerve 

growth factors, observed for miR-29a-3p target genes. These two studies used two different profiling 

approaches and sample sizes, whereas genetic structure of studied populations, cohort composition, 

sample processing, validation technique, and data normalization were very similar and comparable. 

Therefore, discrepancies between our two studies can mainly be explained with the fact that we 

investigated two different human body fluids (processed serum and processed saliva). 

4.5. Summary and conclusions 

This study identifies miR-29a-3p and miR-141-3p, two miRNAs exerting an important role in brain 

development, as potential non-invasive biomarkers for ASD, easily measurable in saliva samples, and 

suggests that these could be used as supportive means for the recognition of ASD verbal and social 

defects. Moreover, both target genes of miR-29a-3p and those of miR-141-3p are main components and 

regulators of pathways and processes that are convergingly dysregulated in ASD: this observation 

confirms the importance of their further characterization in tissues from ASD patients in order to 

investigate their potential central role in neurodevelopmental disorders.  
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This study led us to conclusions similar to those of the serum paper (Chapter 3) about our approach for 

the investigation of ASD. Despite some preliminary weak evidence about these (Hicks et al., 2016; 

Cirnigliaro et al., 2017, Chapter 3), we could (i) neither identify promising overlapping patterns and 

mechanisms of miRNA secretion between the two different human body fluids analyzed (ii) nor suggest 

interesting potential links between body fluids and diseased tissues. 

 

4.6. Materials and methods 

4.6.1. Patient selection 

From the patient database of the Section of Child and Adolescent Psychiatry from University of Catania, 

seventy-seven Caucasian ASD patients, aged 3-9 years and from varying socio-economic contexts 

[mean age: 7.0 (SD: 1.5); M:F 63:14], were randomly recruited and studied from September 2017 to 

July 2018. They were compared to a control group composed of forty, randomly selected, neurologically 

intact unaffected NCs, aged 4-13 years and recruited from local schools [mean age: 6.9 (SD: 1.8); M:F 

29:11], without any history of either chronic diseases or psychiatric disorders.  

Each of the two groups of study participants was randomly divided in two subgroups, to be used as parts 

of the discovery and validation sets of samples, respectively. The discovery set of samples, used for 

miRNA profiling analysis, included saliva samples from twenty-three ASD patients [mean age: 6.7 (SD: 

1.4); M:F 21:2] and twelve NCs [mean age: 6.8 (SD: 1.3); M:F 10:2]. We performed both gender and 

age (young: age ≤ 6; old: age ≥ 7) control analyses to check if group compositions in the discovery set 

of samples were equivalent. Neither gender nor age distribution are different between ASD and NC 

(Fisher’s exact test, two-sided p-value = 0.59, p-value = 1.00, respectively). The validation set of 

samples, analyzed for miRNA profiling data validation, consisted of saliva samples from fifty-four ASD 

patients [mean age: 7.1 (SD: 1.6); M:F 42:12] and twenty-eight NCs [mean age: 6.9 (SD: 2.0); M:F 

19:9]. We performed both gender and age (young: age ≤ 6; old: age ≥ 7) control analyses to check if 

group compositions in the validation set of samples were equivalent. Neither gender nor age distribution 

are different between ASD and NC (Fisher’s exact test, two-sided p-value = 0.42, p-value = 1.00, 

respectively). 

The study was approved by the local Ethics Committee. All parents gave written informed consent.  

Diagnosis of ASD was made according to both DSM-IV-TR (Diagnostic and Statistical Manual of 

Mental Disorders, IV edition – Text Revision) and DSM-5 criteria by a child neurologist (Professor 

Renata Rizzo). All study participants were evaluated at the University Hospital Policlinico-Vittorio 

Emanuele of Catania. They were assessed through the ADOS and ADI-R schedules in order to evaluate 
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ASD symptoms and through the WISC-III and WPSSI-IV (Weschler Preschool and Primary Scale of 

Intelligence) scales, used by a psychologist, to estimate both IQ and cognitive functioning. 

Neuropsychological features of participants are summarized in Table 4.8. 

 

Table 4. 8. Clinical and neuropsychological features of study participants. Data are shown as means 
and standard deviations between parentheses. ASD: Autism Spectrum Disorder; NC: Unaffected 
Control; TIQ: Total Intelligence Quotient; ADI-R: Autism Diagnostic Interview-Revised; ADOS: 
Autism Diagnostic Observation Schedule. 

 TIQ ADI-R ADOS 
  Social 

interaction 
Commu-
nication 

 

Repetitive 
and 

restricted 
behaviors 

Developmental 
abnormalities 

Commu-
nication 

 

Social 
interaction 

 

Imagination 
 

Repetitive 
and 

restricted 
behaviors 

ASD 68.9 
(19.7) 

10.9 
(3.7) 

9.4  
(2.4) 

5.9 
(2.8) 

3.2 
(1.3) 

4.6  
(1.9) 

7.8 
(2.4) 

2.2  
(1.2) 

2.6 
(1.3) 

NC 96.6 
(11.9) 

0 0 0 0 0 0 0 0 

 

4.6.2. Saliva sample processing 

Saliva samples were taken in the morning by inviting young participants to collect saliva in their oral 

cavities and then, release it into 50 ml tubes that were kept at 4°C and processed within an hour from 

sampling (Cheng et al., 2011). Study participants were without food for at least three hours and had a 

good oral hygienical condition at the moment of saliva collection (Cheng et al., 2011). Saliva was 

separated from eukaryotic cellular components and eventual prokaryotic cells through centrifugation at 

10000 rpm in a Beckman J2-21 Centrifuge, at 4°C for 15 minutes. Supernatant saliva was isolated and 

stored at -80°C until analysis. 

4.6.3. RNA extraction and precipitation 

Total RNA to be used for miRNA profiling analysis was isolated from 800 μl saliva samples by using 

Qiagen miRNeasy Mini Kit (Qiagen), according to Qiagen Supplementary Protocol for purification of 

RNA (including small RNAs) from serum or plasma. RNA was eluted in a 200 μl volume of RNAse-

free water and subsequently subjected to precipitation by adding 20 μg of glycogen, 0.1 volume of 3 M 

sodium acetate, and 2.5 volumes of ice cold 100% ethanol (Walker and Lorsch, 2013). After incubation 

at -80°C overnight, RNA was centrifuged, washed twice in a 500 μl volume of ice cold 75% ethanol, 

and dissolved in a final 7 μl volume of RNAse-free water. Total RNA to be used for miRNA profiling 

data validation was extracted from 400 μl saliva samples by using the same kit and protocol. It was 

eluted in a final 45 μl volume of RNase-free water (with two consecutive steps of elution performed in 

the same collection tube) and it was not subjected to precipitation (Cirnigliaro et al., 2017). RNA was 

quantified and assessed for its purity by using the NanoDrop Spectrophotometer. 
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4.6.4. MiRNA profiling through NanoString nCounter technology 

The saliva expression of 827 circulating miRNAs from 23 ASD patients and 12 NCs (discovery set) was 

profiled through NanoString nCounter technology by using three nCounter Human miRNA Expression 

Assay Kits (NanoString Technologies) and a nCounter Analysis System with FLEX configuration (Prep 

Station and Digital Analyzer) (NanoString Technologies), according to manufacturer’s instructions 

(Momen-Heravi et al., 2014). We used a 3 μl (corresponding to approximately 300 ng) volume of total 

RNA for sample preparation (Momen-Heravi et al., 2014). We performed three individual runs of 12 

samples each. NanoString Technologies nCounter assays, in combination with nCounter Analysis 

System, provides a sensitive, reproducible, and highly multiplexed method for direct and precise 

detection of targets through molecular barcodes, without the use of (and following bias introduced by) 

either reverse transcription or amplification.  

We carried out data analysis using both nSolver 3.0 (Momen-Heravi et al., 2014) and MeV software. 

All the following steps were performed on nSolver 3.0. First, we assessed imaging quality control 

metrics for each sample run. At this point, we neither subtracted a background count level from each of 

the miRNA probes nor normalized miRNA counts using the internal positive controls present in each 

CodeSet. To normalize data prior to comparing them between hybridizations, we rather preferred a 

global normalization method which utilized miRNA reporters with the highest counts (36 ones with 

mean counts across samples higher than 100) to generate geometric mean-based sample-specific 

normalization factors. Moreover, since one of the three kits came from a different production lot, we 

used a reference sample that we prepared with kits from both lots and that we run twice to perform batch 

calibration, correcting counts by computing miRNA-specific calibration factors. Once we obtained a 

matrix (miRNAs in rows, samples in columns) containing normalized calibrated counts, we filtered it 

by keeping only those miRNAs (45 ones) whose counts were higher than 50 in at least 30 of the samples 

analyzed. DE circulating miRNAs in saliva from ASD patients compared to NCs were obtained 

performing SAM statistical analysis on this filtered matrix with MeV software. We used a two-class 

unpaired test, based on at least 100 permutations per miRNA, with a FDR cut-off of 0.25, in order to 

detect dysregulated miRNAs. This statistical analysis identified 25 DE miRNAs for the comparison 

ASD vs NC. However, we strictly selected just 10 out of these 25 miRNAs as DE (Figure 4.1, Table 

4.1), since these showed the most marked and reproducible expression differences between the two 

groups. In addition, we used raw p-values for these 10 DE miRNAs from unpaired t-test as an additional 

criterion to elect miRNAs for further validation in order to investigate only the most promising ones. It 

is worth noting that the same CodeSet probe hybridizes to both miR-4454 and miR-7975 and therefore, 

we only could observe the combined and cumulative expression levels of these two miRNAs and 

consider them as just one dysregulated molecule (miR-4454 + miR-7975). We chose miR-21-5p as an 

appropriate housekeeping miRNA to use for validation assays, since (i) sample-specific normalization 
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factors based on its counts were highly correlated with those generated in the analysis performed on 

nSolver 3.0 and (ii), as a consequence, when normalizing raw counts to sample-specific normalization 

factors based on it, we were able to reproduce the expression differences observed in the original 

analysis between the two groups. 

4.6.5. MiRNA profiling data validation 

We used RNA from saliva of fifty-four ASD patients and twenty-eight NCs (validation set) to perform 

miRNA-specific reverse transcription reactions producing miRNA-specific cDNAs for real-time PCRs. 

These RT-PCR analyses were performed using TaqMan MicroRNA Assays (Applied Biosystems) 

specific for the 5 most promising DE miRNAs, miR-16-5p, miR-29a-3p, miR-141-3p, miR-146a-5p, 

and miR-200a-3p, and for the selected endogenous control, miR-21-5p. All the following analyses were 

performed with GraphPad Prism for Windows v6.01. D’Agostino-Pearson omnibus K2 test and Shapiro-

Wilk test were performed to check if data from the two groups were normally distributed. Mann-

Whitney test was used to test the differential expression of those miRNAs between the two groups. 

Statistical significance was established at a p-value ≤ 0.05. Expression FC values of miRNAs were 

calculated by applying the 2−ΔΔCt method (Schmittgen and Livak, 2008).  

Since the p-value obtained for miR-16-5p was very close to the chosen α for Mann-Whitney test, we 

repeated the analysis just for this miRNA by stratifying study participants for their age and considering 

two different subgroups in the validation set of samples, the young (age ≤ 6; 17 ASD patients vs 9 NCs) 

and old (age ≥ 7; 37 ASD patients vs 19 NCs) ones. We performed gender control analyses on both 

subgroups to check if subgroup compositions were equivalent. Gender distributions are not different 

between ASD and NC for both the young and the old groups (Fisher’s exact test, two-sided p-value = 

1.00, p-value = 0.19, respectively). We also performed gender control analyses between the two ASD 

subgroups and the two NC subgroups, individually. Gender distribution is not different between young 

ASD and old ASD subgroups (Fisher’s exact test, two-sided p-value = 0.48). Moreover, gender 

distribution is not different between young NC and old NC subgroups (Fisher’s exact test, two-sided p-

value = 0.67). These last analyses made us conclude that gender is not responsible for the expression 

differences for miR-16-5p observed in the old subgroup. 

4.6.6. Correlation between expression levels of dysregulated miRNAs and 

neuropsychiatric parameters 

We analyzed correlation between ΔCt values for either miR-29a-3p or miR-141-3p, obtained from the 

normalization to miR-21-5p, and neuropsychiatric parameters. IQ (Verbal, Performance, and Total), 

ADI-R items concerning social interaction, communication, repetitive and restricted behaviors, and 

developmental abnormalities (ADI-R items A-D), and ADOS items regarding communication, social 

interaction, imagination, and repetitive and restricted behaviors (ADOS items A-D) were the 
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neuropsychiatric parameters chosen for these analyses. Spearman correlation was computed on 

GraphPad Prism software when analyzing these not normally distributed data. Two-sided p-values from 

these correlation analyses that were ≤ 0.05 were further corrected for multiple comparisons by using 

three different approaches: Bonferroni correction, Holm-Bonferroni correction, and BH FDR procedure. 

Statistical significance was established at a p-value ≤ Bonferroni corrected α = 0.05/11 = 0.0045, at a 

Holm-Bonferroni corrected p-value ≤ 0.05, and at a BH FDR adjusted p-value ≤ 0.05. However, we 

strictly selected only correlations with a p-value ≤ Bonferroni corrected α as significant ones. Linear 

regression analyses were also carried out on GraphPad Prism software only for the eight significant 

correlations. Statistical significance was established at a p-value ≤ 0.05. We also corrected these p-

values for multiple comparisons by using Bonferroni correction and statistical significance was 

established at a p-value ≤ Bonferroni corrected α = 0.05/4 = 0.0125. 

4.6.7. Functional analyses of validated targets of miR-29a-3p and miR-141-3p 

miR-29a-3p and miR-141-3p targets whose validation was based on strong evidence were retrieved by 

miRTarBase (Release 7.0) database (Chou et al., 2016). clusterProfiler v3.8.1 R package (Yu et al., 

2012) was used to perform individual functional enrichment analyses on validated targets of miR-29a-

3p and miR-141-3p in R v3.5.0 (R Core Team, 2016). We searched for the gene annotation terms from 

the GO, DO, and KEGG databases that were over-represented in these two lists of targets compared to 

the entire genome. Statistical significance for the hypergeometric test was established at a BH adjusted 

p-value ≤ 0.05. gofilter() and simplify() functions in clusterProfiler were employed in order to select 

level-specific GO terms and to remove the most redundant ones, respectively. 

4.6.8. ROC curve analyses and biomarkers’ performance evaluations 

ΔCt values for miR-29a-3p and miR-141-3p, obtained from the normalization to miR-21-5p, served as 

input data to perform classical univariate ROC curve analyses for each miRNA on the server 

Metaboanalyst 3.0 (Xia and Wishart, 2016). An appropriate ΔCt cut-off point maximizing both 

sensitivity and specificity was found for each curve by calculating the maximum Youden index J. 

GraphPad Prism software was used to create Figure 4.6 and 4.7. The true positive rate (y-axis) was 

plotted in function of the false positive rate (x-axis), for different ΔCt cut-off points.  

Since these ROC curves were based on miRNAs already identified as differentially expressed between 

ASD and NC, they should be considered just as indicators of the discriminating potential of the two 

miRNAs, not of their actual performance as biomarkers. Therefore, we also built corresponding logistic 

regression models for both miR-29a-3p and miR-141-3p expression and we tested them through CV and 

permutation testing, once again, by using the server Metaboanalyst 3.0. For more details about this 

procedure see Section 3.6.8. Finally, we built a logistic regression model combining these two miRNAs 
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and we tested it through CV and permutation testing on Metaboanalyst 3.0, to evaluate their performance 

if they were used as combined classifiers for ASD. 
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4.7. Supplementary Figures 
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Figure S4. 1. Over-represented GO terms in the list of target genes controlled by miR-29a-3p 
compared to the entire genome. (A) Dot plot for GO BP terms. This dot plot shows only 98 of the 819 
significantly over-represented GO BP terms. These were the left terms after two subsequent steps of 
filtering: (i) selection of level 9 BP terms and (ii) removal of terms that were similar for at least the 70% 
(only the term with the lowest Benjamini-Hochberg adjusted p-value in each group of redundant ones 
was kept). (B) Dot plot for GO Molecular Function terms. (C) Dot plot for GO Cellular Component 
terms. Each circle in the plots symbolizes an over-represented term: its x-axis coordinate reflects the 
Gene Ratio value; its size is directly proportional to the Count value; its color represents the Benjamini-
Hochberg adjusted p-value generated by the hypergeometric test. Gene Ratio: the ratio of number of 
genes of interest that are annotated with a certain term from the database used to perform the analysis 
to number of genes of interest that are annotated with terms from the same database. Count: number of 
node genes within the network that are annotated with a certain term. GO: Gene Ontology; BP: 
Biological Process; MF: Molecular Function; CC: Cellular Component. 
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Figure S4. 2. Over-represented KEGG Pathway terms and Module terms in the list of target genes 
controlled by miR-29a-3p compared to the entire genome. (A) Dot plot for KEGG Pathway terms. This 
dot plot shows only 42 of the 88 significantly over-represented KEGG Pathway terms. These were the 
terms with a Benjamini-Hochberg adjusted p-value ≤ 0.001. (B) Dot plot for KEGG Module terms. For 
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in-depth description of the plots see Figure S4.1 legend. KEGG: Kyoto Encyclopedia of Genes and 
Genomes. 

 

Figure S4. 3. Over-represented DO terms in the list of target genes controlled by miR-29a-3p 
compared to the entire genome. Dot plot for DO terms. This dot plot shows only 90 of the 219 
significantly over-represented DO terms. These were the terms with a Benjamini-Hochberg adjusted p-
value ≤ 0.001. For in-depth description of the plot see Figure S4.1 legend. DO: Disease Ontology. 
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Figure S4. 4. Over-represented GO terms in the list of target genes controlled by miR-141-3p 
compared to the entire genome. (A) Dot plot for GO BP terms. This dot plot shows only 18 of the 103 
significantly over-represented GO BP terms. These were the left terms after two subsequent steps of 
filtering: (i) selection of level 9 BP terms and (ii) removal of terms that were similar for at least the 70% 
(only the term with the lowest Benjamini-Hochberg adjusted p-value in each group of redundant ones 
was kept). (B) Dot plot for GO Molecular Function terms. (C) Dot plot for GO Cellular Component 
terms. For in-depth description of the plot see Figure S4.1 legend. GO: Gene Ontology; BP: Biological 
Process; MF: Molecular Function; CC: Cellular Component. 
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Figure S4. 5. Over-represented KEGG Pathway terms and Module terms in the list of target genes 
controlled by miR-141-3p compared to the entire genome. (A) Dot plot for KEGG Pathway terms. (B) 
Dot plot for KEGG Module terms. For in-depth description of the plots see Figure S4.1 legend. KEGG: 
Kyoto Encyclopedia of Genes and Genomes. 
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Figure S4. 6. Classical univariate ROC curve analyses for saliva miR-29a-3p and miR-141-3p. (1) 
The graphs refer to miR-29a-3p. (2) The graphs refer to miR-141-3p. (A) Classical univariate ROC 
curve analysis. The red dot represents the sensitivity/specificity pair with the highest Youden index J. 
(B) Boxplot depicting the distribution of ∆Ct values in the two groups. The red line represents the ΔCt 
value cut-off corresponding to the red dot on the curve in (A). The label 1 refers to the ASD group, 0 to 
the NC group. 
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Chapter 5. General discussion and conclusions 
 

My PhD research project includes two studies, profiling circulating miRNAs in serum and saliva from 

ASD patients, respectively. To date, these two series of experiments specifically represent the third and 

fourth high-throughput studies profiling miRNAs in a body fluid from ASD patients. 

We hypothesized that the expression analysis of circulating miRNAs in serum and saliva could represent 

an easy and innovative approach to address important biomedical needs related to ASD, such as the lack 

of diagnostic molecular biomarkers and the incompleteness of ASD etiology understanding. Indeed, we 

also exploited this liquid biopsy-based investigation approach to propose to the scientific community 

new potentially intriguing pathological mechanisms and corresponding molecules with a crucial role in 

them. This could represent a particularly valuable option when investigating neurodevelopmental 

disorders, like ASD, for which preferable tissue biopsies are not easily accessible to researchers.  

Ideal ASD biomarkers should be (i) differentially observed in ASD patients compared to healthy 

controls, (ii) detectable in the ASD population at every stage of life, and preferably at the earliest one 

possible, (iii) specific and helpful in ASD discrimination from other (even comorbid) 

neurodevelopmental disorders, and (iv) correlated with commonly used ASD screening tools. 

Intriguingly, this project led to the identification of serum miR-140-3p and supernatant saliva miR-29a-

3p and miR-141-3p as potential non-invasive supportive means for ASD differential diagnosis (Chapter 

3) and recognition of ASD defects in social interaction and verbal communication (Chapter 4), 

respectively.  

Our experimental use of two different miRNA profiling technologies, both an amplification-based 

method and a hybridization-based one, confirmed the importance of validating data from high-

throughput approaches with more specific assays in a larger set of samples. In both studies, we verified 

only few profiling candidate miRNAs (1 out of 4 in Chapter 3 and 2 out of 5 in Chapter 4) as 

dysregulated in the validation set of samples: also, either extent or sign of differential expression often 

differed (see miR-29a-3p as an illustrative case). The need for further validation becomes even stronger 

when proposing the relative quantification of these molecules as a discriminative molecular test: their 

true predictive performance as biomarkers has to be established on wider and younger cohorts of 

patients.  

Profiling a large number of genes gives the opportunity to screen the specific analyzed samples for more 

suitable and accurate endogenous controls and represents a good normalization strategy when others are 

missing in the literature. At the moment, accurately described normalization approaches and validated 

reference genes for serum and supernatant saliva miRNAs in ASD patients lack. We selected miR-146a 
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(Chapter 3) and miR-21-5p (Chapter 4) as the most appropriate and accurate reference genes for our two 

extracellular systems. Both of these miRNAs have been identified as either dysregulated in human ASD 

tissues or associated to inflammation and immune response observed in neurodegenerative and 

neurological disorders: however, this neither discourages their use as reference miRNAs in our datasets 

nor affects the applicability of our results. Nevertheless, in our saliva study we did not confirm miR-

146-5p as upregulated in ASD (the expression trend that we found in the profiling data analysis), further 

proving its appropriate use as endogenous control in the serum one. Moreover, this project actually 

offers good normalization references to future similar studies. 

In our saliva study we observed that, when used in combination, miR-29a-3p and miR-141-3p perform 

at a better level than when used individually in the discrimination of ASD patients. However, their 

combined predictive performance showed to be very similar to the one of miR-140-3p alone observed 

for the comparison ASD vs NC in our serum study: this suggests that a combination of biomarkers is 

not always to be preferred to a single one. The main limits for the applicability of this project results are 

the diagnostic specificity and the reproducibility issues related to the use of circulating miRNAs as 

biomarkers. All of the dysregulated circulating miRNAs proposed as potential biomarkers in this project 

have already been associated with other pathologies and suggested as disease markers in other contexts, 

mainly cancer and (neuro)degenerative, inflammatory, and metabolic diseases. One explanation for 

these observations could be that these miRNAs are simply indicative of a general disease state (i.e., 

inflammation and response to stress). Interestingly, the non-specific spectrum of associated diseases for 

each miRNA mostly overlaps with that of the other two dysregulated ones: it could be possible that they 

are all similarly involved in neuronal and inflammatory pathways and processes in common between 

the associated pathologies, some of which are also known to be altered in ASD. Finally, it is worth 

mentioning once again the already identified association of blood miR-140-3p to both bipolar disorder 

and major depression. Although (i) there is little reproducibility between current studies on biological 

fluids from ASD patients and results from this project and (ii) we could not even identify promising 

overlapping patterns and mechanisms of miRNA secretion between serum and saliva, still functional 

analysis results from all of these independent investigations match and are consistent with the first 

proposed molecular neuropathological basis for ASD, relying on neuronal down-modulation and 

immune-glial up-modulation (Chapter 1). 

This once again confirms the value of our computational analyses used to reconstruct the potential 

intracellular context of dysregulated circulating miRNAs as an approach to gain further insight into the 

molecular basis of neurodevelopmental disorders like ASD. In fact, overall, our computational analysis 

findings confirmed the validity, appropriateness, and applicability of this alternative research use of 

liquid biopsies, since we were able to identify, at the same time, already known (i.e., synaptic plasticity 

and function, immune response, CD38, and PTEN) and completely new (i.e., regulation of circadian 
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rhythms by NRIP1 and RORA) processes and molecules with a (possible) role in ASD. Importantly, 

miR-140-3p, miR-29a-3p, and miR-141-3p and their targets are all crucially involved in inflammation, 

synaptic function and plasticity, neuronal differentiation and morphogenesis, and nervous system 

development. Finally, miR-140-3p and miR-29a-3p are highly expressed in the brain, where they are 

crucial for cortical development: this suggests for them a potential central role in neurodevelopmental 

disorders that is worth further investigating. 


