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Abstract

The main goal of this thesis is the investigation of the arrival directions of ultra-high energy cosmic rays
(UHECRs). The clustering of such events, collected by the Pierre Auger Observatory, is used to infer
the nature of sources and their density, as well as other physical unknowns. Results are based on the
comparison between real and simulated data. Hence, an ad hoc Monte Carlo code (HERMES) for the
realistic simulation of UHECR propagation in the Universe and a novel method (MAF) to quantify the
amount of clustering in a data set of few UHECR events have been developed.

In the first chapter, a general overview of UHECR physics will be given, with particular attention
to the Pierre Auger Observatory and the most recent results regarding its measurements.

In the second and third chapters, we will present the general structure of our propagation code
and we will discuss all the models, the parameterizations and the procedures adopted to simulate the
propagation of UHECRs in a magnetized Universe. In the second chapter, magnetic fields are treated,
and their impact on the propagation of UHECRs is discussed. In particular, we will simulate the
diffusion of charged particles in both turbulent and structured magnetic fields for energy values ranging
from 1017 eV to 1021 eV. In the third chapter, the propagation of protons, heavier nuclei, photons and
neutrinos, will be treated in the absence of magnetic fields. We will define the cosmological framework
of HERMES and we will treat the parameterizations adopted to simulate the extragalactic background
radiation. The parameterizations for the cross section of pγEBR, AγEBR and γγEBR interactions are
discussed, as well as the relevant energy-loss processes. In particular, pair and pion production, as well
as photo-disintegration in the case of heavy nuclei, are treated with great detail. Mean free path and
energy-loss length are numerically estimated with HERMES: their dependence on nuclear mass and
their evolution with redshift are also discussed. The impact of propagation effects on the GZK horizon
of UHE protons is investigated, and some comparisons between our results and those obtained with
other simulators available to the UHECR community are presented.

In the fourth chapter, a novel method is introduced to estimate the statistical significance of clus-
tering in the arrival direction distribution of few events, a necessary requirement because of the current
small number of events observed above 5×1019 eV. The method involves a multiscale procedure, based on
information theory and extreme value statistics, providing high discrimination power, even in presence of
strong background isotropic contamination. It is naturally extended to allow multiscale cross-correlation
analysis with candidate sources of UHECRs. Here, the term “multiscale” explicitly indicates the depen-
dence on the angular scale adopted to investigate the arrival directions of UHECRs. It is shown that
multiscale methods have some valuable features: i) they are semi-analytical, drastically reducing com-
putation and allowing a larger parameter space to be explored in reasonable amount of time, ii) they
are very sensitive to small, medium and large scale clustering, iii) they are not biased against the null
hypothesis.

Finally, in the fifth, sixth and seventh chapters, Monte Carlo simulations, required because of the
stochastic nature of some interactions between UHECRs and background photons, are extensively
adopted to investigate real data. In the fifth chapter we use multiscale methods to explore the ef-
fects of experimental uncertainties on clustering and correlation of UHECRs with catalogs. In the
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sixth chapter, energy losses due to secondary particle production (electron/positron pairs and pions) or
photo-disintegration, as well as deflections due to galactic and extragalactic magnetic fields, are taken
into account. All of such interactions, together with the distribution of (still unknown) sources, produce
different distributions of arrival directions of events observed at Earth. Hence, multiscale clustering in
events detected with the Pierre Auger Observatory and in simulated sky maps of UHECRs, mimicking
realistic astrophysical scenarios, is used to put bounds on some relevant unknowns, as the fraction of
protons in the data, the density of sources and the strength of the turbulent component of the extra-
galactic magnetic field. Moreover, the possibility that nearby active galactic nuclei and black holes
could be responsible for the observed flux of UHECRs is explored in detail. In the seventh chapter, we
perform a more extended study which takes into account additional observables, as the elongation rate
and the energy spectrum. By varying the underlying assumptions, as for instance those ones on the
mass composition and the intensity of magnetic fields, we have outlined an astrophysical scenario able
to explain Auger data from a phenomenological point of view.
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Chapter 1

Ultra-high energy cosmic rays and the

Pierre Auger Observatory

Cosmic rays (CRs) are generally considered to be charged nuclei originating outside the solar system.
Such nuclei have been detected and their energy spectrum spans more than 14 orders of magnitude, from
few MeV to hundreds of EeV (1 EeV = 1018 eV). As many other topics, cosmic ray physics was born as an
observational science. In this chapter, we will briefly describe the history of measurements that carried
such an exciting field to the ultra-high energy (UHE) era and to the possibility of particle astronomy.
Moreover, we will present and discuss the main experimental results regarding the measurement of the
energy spectrum and the mass composition of CRs, with particular attention to those events of interests
for the present thesis, above 1 EeV.

We will overview the possible production mechanisms responsible for the acceleration of charged
nuclei up to highest energies and we will identify the candidate sources of such events. We will sketch the
theoretical description of the extensive air shower, together with the corresponding detection techniques.

Successively, we will focus our attention to the largest observatory of ultra-high energy CRs (UHE-
CRs), the Pierre Auger Observatory. We will describe its innovative detection technique, with particular
attention to event selection and reconstruction. Finally, we will show the up-to-date results obtained
with Auger measurements. In particular, we will show energy spectrum and mass composition mea-
surements, as well as the intrinsic anisotropy of their arrival direction at Earth and their correlation
with the position of active galactic nuclei (AGN), one of the most promising acceleration sites for such
extraordinary events.

1.1 Historical highlights

The first experimental evidences of the existence of cosmic rays are due to the pioneeristic measurements
led by D. Pacini between 1907 and 1911 and by V. Hess between 1910 and 1912. By observing the
variations of the rate of the ionization on mountains, over a lake, over the sea, and underwater, Pacini
concluded that ionization underwater was significantly lower than on the sea surface, showing that such
a behavior could not be attributed to the radioactivity of the Earth [1]. By measuring the ionization rate
of air as a function of altitude, by mean of hydrogen-filled balloons, Hess found an increase of ionizing
radiation with increasing height and he concluded that radiation penetrates from outer space into the
atmosphere [2]. In 1913 and 1914, W. Kolhörster repeated the experiment led by Hess up to an altitude
of 9 km. Such experimental results confirmed that ionization rate from this radiation was greater at
that altitude than at sea level and that the source for these ionizing rays was of extraterrestrial origin
[3, 4]. For his discovery, Hess received the Nobel Prize in Physics in 1936. The term “cosmic rays” was
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coined by R. Millikan [5] who confirmed in 1926 they were extraterrestrial in origin, and not produced
by atmospheric electricity [6–8].

In 1929, Bothe and Kolhörster used for the first time two Geiger-Müller counters to measure coin-
cident signals, and by placing absorber material in between the two counters they concluded that the
cosmic radiation consists of charged particles [9]. Just one year after, J. Clay showed that the intensity
of cosmic rays depends on the (magnetic) latitude of the observer, further corroborating the hypothesis
that ionization radiation from the outer space consists of charged particles [10].

In 1930, B. Rossi used several Geiger counters, powered with a bank of batteries, and invented the
first coincidence circuit for particle detection [11]. In the same year, from studies of Störmer’s theory
about the motion of a charged particle in a dipole magnetic field like that of the Earth, he predicted that
if the primary cosmic rays were charged particles with one charge sign, then a difference between the
cosmic ray intensities from the east and the west should be measured [12]. The experimental evidences
for such a prediction has been found later, in 1934 [13–15]. Between 1931 and 1932, Rossi carried out
three experiments, based on triple coincidence among three Geiger counters, of fundamental importance
in the development of cosmic-ray and particle physics. The choice of the triple coincidence requirement
dramatically reduced the rate of accidental coincidences and he proved the presence in cosmic rays of
penetrating particles with energies more than 2 GeV. In another experiment, Rossi placed three counters
in a triangular configuration surrounded by lead shielding. Since a single penetrating particle could not
discharge all three counters, triple coincidences showed that interactions of cosmic rays in the shield
above the counters produced showers of particles. The result was so astonishing that one journal refused
to publish it, and another accepted it only after Werner Heisenberg vouched for Rossi’s reliability. In
1933, Rossi measured the occurrence rate of showers as a function of the thickness of a screen of lead
or iron placed above the triangular arrangement of counters [16]. The result demonstrated the presence
in cosmic rays of two distinct components: a soft component, soon identified as electrons and photons,
which readily produces showers and is rapidly absorbed in lead, and a hard component, consisting of
penetrating particles (muons) that produce showers much less readily, and is only gradually attenuated
in lead. The measurements led by Rossi and their dependence on the atomic number of the screen
provided a critical test of the Bhabha-Heitler theory of electron-photon cascade showers. It is worth
noticing that muons were discovered after just three years by C. Anderson and S. Neddermeyer, while
studying cosmic radiation. In 1934, Rossi discovered extensive cosmic-ray air showers. In order to check
the rate of accidental coincidences between pulses from the two Geiger counters he was using in his
experiment, he placed the two counters some distance apart in a horizontal plane. Rossi found the
coincidence rate was larger than the expected accidental rate derived from the counting rates of the
individual Geiger counters and the resolving time of the coincidence circuit1 [18]. In practice, cosmic
rays penetrating the atmosphere with very high energy produce a shower of secondary particles, whose
detection in coincidence, by two or more detectors, is still the basic scheme of a large class of modern
detectors.

In 1933, A. Compton published the measurements of the intensity of cosmic rays by 8 different
expeditions at 69 stations distributed at representative points over the Earth’s surface, concluding that
the data can be quantitatively explained on the basis of Lemaitre and Vallarta’s theory of electrons
approaching the earth from remote space [19]. Such an interpretation contradicted that of Millikan,
who believed that cosmic rays were high-energy photons with some secondary electrons produced by
Compton scattering of gamma rays [20].

In 1934, Compton confirmed that photons could not constitute more than a negligible part of primary
cosmic rays: in fact, comparison of high altitude measurements at the equator with those at high
latitudes showed that the equatorial cosmic rays were closely similar to the magnetically deviable rays

1The brief summary of the extraordinary activity of B. Rossi is partially extracted from the recent review of G. Clark
[17].
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both in their absorption in air and in their transition effects. This effect indicated that most of the
cosmic rays which reached the earth were similar in character to the deviable rays, most probably
protons [21]. Moreover, he reported that the coincidence experiments of Bothe-Kolhörster, Rossi and
others, considered in the light of various alternative interpretations, showed the existence of penetrating,
electrically charged particles which were either primary cosmic rays or were secondaries of primaries
absorbed high in the atmosphere. The shower-producing radiation, which seemed to consist of photons,
had to be produced by some electrically charged primary rays, which he provisionally identified as
electrons [22].

In 1938, Kolhörster reported the discovery of coincident signals between two tubes set as far as 75
m apart, by using Geiger-Müller tubes operated in coincidence: he concluded that the tubes were hit
by secondary particles or showers generated by cosmic rays in the atmosphere [23]. With a similar
technique, Pierre Auger investigated air showers and, apparently unaware of Rossi’s report, claimed
their discovery, concluding that the registered particles are secondaries generated in the atmosphere,
originating from a single primary cosmic ray [24].

The theoretical background for such discoveries has been developed in the successive years, together
with more sophisticated experiments devoted to measure the mass composition of primary cosmic rays
and their energy spectrum, discussed in the next sections.

1.2 The energy spectrum and the mass of CRs

The energy of cosmic rays extend from the MeV range to at least 1020 eV. The differential energy
spectrum of all cosmic-ray particles (i.e. integrated over mass) is shown in Fig. 1.1, multiplied by a
factor E2 to facilitate visualization. It falls steeply as function of energy, decreasing by about a factor
500 per decade in energy. At GeV energies, more than 1000 CRs per second and square meter are
observed: such a flux decreases to about one particle per square meter and per year at a PeV, and
further to less than one particle per km2 and per century above 100 EeV. Such a dramatic decrease
in flux represent one of the main obstacles to the detection of high energy CRs. At sub-GeV energies
individual isotopes are measured with small detectors in outer space and individual elements can be
resolved with balloon-borne detectors in the TeV regime. Above energies exceeding 100 TeV large
detection areas are required to collect a suitable number of particles in a reasonable time. At present,
such detectors are realized at ground level only and secondary particles generated in the atmosphere,
namely the extensive air showers, that will be described in Sec. 1.5, are registered. At PeV energies, mass
identification becomes difficult and model-dependent, although groups of elements may still resolved.
At the highest energies even a classification into “light” and “heavy” particles becomes an even harder
experimental challenge.

Fig. 1.2 shows the relative abundances of CRs, as a function of nuclear charge, measured at the
lowest energies (around 1 GeV/n), normalized to Si = 100. Qualitatively, it is similar to that in the
solar system (solid line), with differences around Z = 2− 7 (hydrogen isotopes, helium, lithium), Z = 9
(Berillium) and Z = 20 − 26 (Iron group). Such elements are more abundant in CRs than in solar
system, because they are assumed to be produced in spallation processes of the more abundant particles
of the CNO, iron, and lead groups during the propagation of cosmic rays through the Galaxy. Hence,
they are frequently referred to as secondary cosmic rays. As the spallation cross section of the relevant
nuclei is known at GeV energies, the ratio of secondary to primary cosmic rays is used to infer the
propagation path length of cosmic rays in the Galaxy (see [26] and Ref. therein).

At the highest energies, an indicator of the mass of UHECRs is the average depth of the shower
maximum of Xmax. We will define it further in the text, where we will describe extensive air showers:
within this context, we are interested only in showing how the mass composition changes with energy,
from 1014 eV up to ≈ 1020 eV. In Fig. 1.3 such an indicator is shown, compared to predictions for proton
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Figure 1.1: All-particle energy spectrum of UHECRs measured by several experiments [25]

and iron induced showers obtained with different hadronic models.
The energy spectrum of single species, as well as the all-particle one, behaves like ∼ E−γ over a

wide energy range, indicating non-thermal acceleration processes. At a first sight, it appears rather
featureless, although it is not the case after a more careful inspection. To put in evidence its structures,
the flux is generally multiplied by factors of type Eκ, as shown, for instance, in the right panel of Fig. 1.4
(where κ = 2.7). The spectral index is rather constant (γ ≃ 2.7) up to 1015.5 eV (see the left panel of
Fig. 1.4, showing the measured energy spectrum from GeV to PeV energies for different species), where
a steepening is observed (γ ≃ 3.0), the so-called knee. At about 1017.5 eV a further steepening (γ ≃ 3.3)
is observed, the second knee. At about 1018.6 eV a new change appears, i.e. the ankle. Above the ankle,
the spectrum flattens again (γ ≃ 2.6). Above 1019.5 eV the flux dramatically drops down (γ ≃ 4.3)
[28]. Intriguingly, in this last region a strong suppression of the flux is expected because of the so-called
Greisen-Zatsepin-Kuzmin (GZK) effect [29, 30], that will be described in much more detail successively
in this thesis, where we will discuss the propagation of UHECRs. On of the main results of the Pierre
Auger deals with the experimental evidence of such a suppression, and will be discussed at the end of

4



Figure 1.2: Abundance of elements, measured by several experiments, as a function of nuclear charge (at energies around
1 GeV/n, normalized to Si = 100) [26]. The solid line indicates the abundance in the solar system..

Figure 1.3: Average depth of the shower maximum of Xmax from several experiments, as a function of energy. The lines
indicate predictions for proton and iron induced showers obtained by using the CORSIKA code with different
hadronic models [26].

this chapter. Such structures are particularly evident in the right panel of Fig. 1.4, and are strongly
related to the origin of CRs.

CRs with energy up to a few PeV are thought to be of galactic origin, being generated from the
explosion of Supernovae. The galactic origin, together with diffusive shock acceleration mechanisms
(see further in this chapter), may explain the observed flux up to energies of the order of 1017 eV (see
the left panel of Fig. 1.5), above which a new component of extragalactic origin may raise, accounting
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Figure 1.4: Observed flux of CRs [27]. Left: observed energy spectrum from GeV to PeV energies, for different nuclei as
measured from several experiments. Right: observed all-particle (integrated over mass) energy spectrum from
PeV to the highest energy, rescaled by a factor E2.7 to put in evidence the Knee, the 2nd Knee and the Ankle
(see the text for further information).

Figure 1.5: Observed flux of CRs from Ref. [26]. Left: Cosmic-ray energy spectra according to the poly-gonato model
[31]. The spectra for groups of elements are labeled by their respective nuclear charge numbers. The sum of
all elements yields the galactic all-particle spectrum (−) which is compared to the average measured flux. In
addition, a hypothetical extragalactic component is shown to account for the observed all-particle flux (−−−).
Right: Transition from galactic to extragalactic cosmic rays according to Berezinsky et al. [32]. Calculated
spectra of extragalactic protons (curves 1, 2, 3) and of galactic iron nuclei (curves 1’, 2’, 3’) are compared
with the all-particle spectrum from the Akeno and AGASA experiments. KASCADE data are shown as filled
squares for the all-particle flux and as open circles for the flux of iron nuclei.

for the flux up to the highest energy (see the right panel of the same figure). The transition, around
1018 eV, from galactic to extragalactic component may explain the ankle region, although many models
have been proposed for such a purpose and a definitive answer is still missing, whereas the GZK effect
could explain the suppression of the flux at the highest energy. When we will discuss the propagation

6



of UHECRs, we will present the so-called dip model, which attributes the ankle to propagation effects
(i.e. the interaction of UHE protons and relic photons of the cosmic microwave background radiation),
and we limit here to mention the recent model by Biermann and de Souza, able to explain to observed
energy spectrum by assuming only a galactic origin of CRs and one single extragalactic source, namely
Cen A [33].

The Ginzburg-Syrovatskii (GS) diffusion equation [34, 35], obtained by combining the Navier-Stokes
and Maxwell equations for magnetohydrodynamics (MHD), describes the propagation of galactic cosmic
rays in our Galaxy under quite general assumptions. The derived leaky box models (see for instance
Ref. [36]), are able to account for the observed flux of CRs up to energies around PeV, as well as
the observed dependence on the nuclear charge. The origin of higher energy CRs, thought to be of
extragalactic origin, will be discussed further in this chapter.

In the present thesis work, we focus on the energy range corresponding to the end of the spectrum,
and we mainly consider CRs in the trans-GZK and super-GZK regions (i.e. around and above 50 EeV,
respectively). In fact, there are strong arguments in favor of the origin of such UHECRs in the nearby
Universe. If these particles are light nuclei and the extragalactic magnetic field is weak enough, the
astronomy with charged particles of energy above 50 EeV represents an exciting possibility, complemen-
tary to the astronomy with γ−rays and neutrinos (multi-messenger astronomy). The reasons for such a
requirements will be discussed in the next chapters.

The modeling of the propagation of such UHECRs and the investigation of their intrinsic clustering,
as well as their correlation with candidate astrophysical sources, represents the main subject of the
present thesis.

1.3 UHECR acceleration mechanisms

The 1st order Fermi mechanism [37–39] can be used to explain the acceleration of particles in the
UHE range. The simplest diffusive shock acceleration mechanism assumes i) a shock structure given a
priori, which is not affected by the particles being accelerated, ii) a non-relativistically moving plane-
parallel shock front, with magnetic field parallel to the shock normal, and that iii) inhomogeneities of
the magnetic field can scatter particles efficiently so as to result in a nearly isotropic distribution of the
particles. Under such assumptions, a universal power-law energy spectrum of the accelerated particles,
N(E) ∝ E−s emerges with spectral index s = (r + 2)/(r − 1), being r = v2/v1 the shock compression
ratio, with v1 and v2 the downstream and the upstream velocities of the fluid in the rest-frame of the
shock, respectively. The shock-compression ratio r is related to the adiabatic index of the fluid. For
typical astrophysical situations, one gets r < 4 and hence s > 2 [40]. Of course, such assumptions are
not realistic, and many issues complicate this simple picture.

In relativistic shocks, the maximum energy at which particles can be accelerated depends on the size
of the shock and on the magnetic field. Because we are working in the UHE regime, we can consider
particles moving at the speed of light. A condition for such an extreme acceleration is that the Larmor
radius of the particle rL = E/(ZecB), being Ze the charge of the particle, should be smaller than
half the accelerator size R [41]. In an astrophysical shock, the acceleration of a particle of energy E
is governed by the equation dE/dt = E/Tacc, where Tacc is the energy dependent acceleration time.
Moreover, the spectral index is given by s = 1 + Tacc/Tesc, the energy dependent average escape time.
For 1st order Fermi acceleration at nonrelativistic shocks, the relation

Tacc =
3

v2 − v1

(
D1

v1
+
D2

v2

)
(1.1)

holds, being D1 and D2 the diffusion coefficients corresponding to the two different regions of the stream.
As we will see in the next chapter, inhomogeneities in the magnetic field are responsible for the magnetic
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Figure 1.6: The so-called Hillas plot [41] (left) and its recent updated version [42] (right) showing the candidate sources
of UHE protons as a function of their size and their magnetic field.

pitch angle scattering that causes diffusion. Such a behavior bounds the mean free path λ from below
by the Larmor radius, multiplied by some factor g, from which D1,2 ∼ λ/3 & gE/(3ZecB). Monte-
Carlo simulations of such relativistic shocks show that g can be as large as 40, whereas it is ≈ 1 in
the nonrelativistic case (see [40] and Refs. therein). By minimizing Tacc as a function of v1 and v2,
the relation Tacc & gE/(2.25ZecB) is obtained. Additionally, by requiring that the mean free path
is smaller than the accelerator size, the escape time will be given by Tesc = R2/cλ. By using such
information, and by imposing s = 3, after some algebra, we obtain the expression

Emax ∼ 1017 eV Z

(
R

kpc

)(
B

µG

)
(1.2)

for the maximum energy at the accelerator site. In Fig. 1.6, known as Hillas plot [41, 42], the candidate
sources of UHE protons are shown as a function of their size and magnetic field. Such a plot can be
built by a simple dimensional argument, with no regards for the precise acceleration mechanism. In
any statistical acceleration mechanism, there must be a magnetic field B to keep the particles confined
within the acceleration site. Thus, the size R of the acceleration region must be larger than the diameter
of the orbit of the particle ∼ 2rL. Including the effect of the characteristic velocity βc of the magnetic
scattering centers one gets the general condition

(
R

kpc

)(
B

µG

)
>

2

Zβ

(
E

1018 eV

)
. (1.3)

Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate
protons to UHE, though acceleration of heavier nuclei is possible in much more abundant lower-power
Seyfert galaxies [42]. A more detailed description of such candidate sources is provided in the following.

1.4 Candidate sources of UHECR

A complete treatment of the candidate sources of UHECR is beyond the goal of the present work. We
will limit to briefly discuss the main candidates and their features: for a complete review about such an
interesting topic, we refer to [43] and Refs. therein.
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Figure 1.7: The unification model for AGN. Blazars are those AGN for which the jets are close to the line of sight. A
regular quasar or a Seyfert 1 galaxy is observed if the orientation angle is ∼ 30◦, where the narrow-line and
broad-line regions are visible. At larger angular offsets, the broad-line region will be hidden by the torus, the
corresponding class being Seyfert 2 galaxies. Perpendicular to the jet axis, the full extent of the jets may be
seen particular at low frequencies, giving rise to a morphology typical of radio galaxies [43].

Neutron stars

Neutron stars represent the final stage of stellar evolution, under certain constraints on the stellar
mass (black holes are favorite at the other endpoint). They are characterized by fast rotation, with
period of the order of ms, and large surface magnetic field (B & 1013 G). The acceleration process is
magnetohydrodynamic, rather than stochastic as it is at astrophysical shocks. At the light cylinder
Rlc = c/Ω ≃ 107Ω−1

3k cm, being Ω3k ≡ Ω/3000 rad s−1 and Ω the angular frequency. By assuming that
the surface magnetic field is BS ≡ 1013B13 G, the field at the light cylinder is Blc = 1010B13Ω

3
3k G, from

which the maximum energy of particles that can be contained in the wind near the light cylinder is

Emax =
ZeBlcRlc

c
≃ 8× 1020Z26B13Ω

2
3k eV, (1.4)

where Z26 ≡ Z/26. A neutron star is able to accelerate particle up to energy of the order of 100 EeV
only if its magnetic field is smaller than 1015.4 G and its period is smaller than 10 ms, not very restrictive
values for a young neutron star [43].

Active galactic nuclei and radio galaxies

The unification model of AGN includes a large variety of astrophysical objects. These include blazars
(characterized by strong flat spectrum radio emission, and/or significant optical polarization, and/or
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significant flux variability in the optical and in other wavelengths), optically violently variable quasars
(blazars with optical variability on short timescales), BL Lacertae (presenting a complete or nearly
complete lack of emission lines) and highly polarized quasars.

AGN are galaxies characterized by a supermassive black hole (106 − 1010M⊙) at the center, which
accretes galactic matter to form an accretion disk. Such a region is surrounded by an extended, dusty,
molecular torus, and a corona of electrons populates the inner region generating continuum X-ray
emission. Perpendicularly to the plane of the accretion disk, two-sided jets of relativistic particles are
present. The unification model of AGN is shown in Fig. 1.7, also including Seyfert galaxies, Fanaroff-
Riley objects (FRI and FRII), broad and narrow line galaxies and radio galaxies. In the particular case
of radio galaxies, the most energetic protons injected in the intergalactic medium will have an energy

Emax = 1.4× 1025B
−5/4
µG β

3/2
jet u

3/4R
−1/2
kpc (1 +Aa)−3/4 eV, (1.5)

being BµG ≡ B/1 µG, Rkpc ≡ R/1 kpc, a the ratio of photon to magnetic energy densities, A the
measure of the relative strength of pγ interactions versus the synchrotron emission, βjet the jet velocity
in units of c and u the ratio of turbulent to ambient magnetic energy density in the region of the shock.
Cen A is the closest AGN to Earth, with magnetic field of the order of 50 µG and a hot spot of about
2 kpc: in principle, the maximum energy attainable for protons would be ∼ 1020.6 eV.

Quasars remnants

A spinning supermassive black hole, threaded by magnetic fields generated by currents flowing in a
disc or torus, induces an electromotive force which accelerate a particle near the full voltage, if vacuum
breakdown is prevented and in the absence of severe energy losses. At the present epoch the number of
luminous quasars (with L & 1047 erg s−1) is small. Conversely, quasars appearing at large redshifts (the
expected local number of dead quasars associated with the same parent population) is expected to be
large. The term “quasars remnants” describes the present-epoch population of dead quasars harboring
supermassive black hole nuclei. In the compact dynamo model, a poloidal magnetic field B near the
hole produce a voltage V ∼ aB, where a is the hole’s specific angular momentum. If Ṁ is the accretion
rate dM/dt in M⊙ yr−1 units, the maximum electromotive force is V ∼ 1.2× 1021Ṁ1/2 V. After taking
into account the energy loss rate through curvature radiation, the maximum acceleration energy is

Emax = 3× 1019µZ1/4M
1/2
9 B

1/4
4 (ρ2h/R3

g) eV, (1.6)

where ρ is the average curvature radius of an accelerating ion (assumed to be independent of the ion
energy), h is the magnetic field curvature, B4 ≡ B/(104 G), M9 ≡ M/(109 M⊙) and Rg = GM is the
gravitational radius. Hence, only a fraction of the potential energy available is released as UHECRs,
while the rest is radiated in the form of curvature photons. For a magnetic field curvature of the order
of Schwarzschild radius (h ≃ 2Rg) and Ṁ ≈ (0.1 − 10)M⊙ yr−1, the acceleration energy of a proton
becomes

Emax = (1− 1.8)× 1020M
1/4
9 eV. (1.7)

Heavier nuclei would reach higher energies, but are subject to photo-disintegration [43].

Gamma ray bursts

GRBs are short flashes of high energy radiation, brighter than any other gamma ray source in the
sky. The bursts are characterized by a large variety of temporal profiles, spectra and timescales, whose
origin is still poorly known. GRBs are the most energetic processes that we know about and Lorentz
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factors needed to model their jet emission range from 100 to 1000, with timescales ranging from tens
of ms up to hundreds of seconds. Generally, the existence of GRB is attributed to the dissipation of
the kinetic energy of a relativistic expanding plasma wind, whose primal cause is not yet known (this
models is known as “fireball”, and we refer to [43] and Refs. therein for further detail). The rapid rise
time and short duration of the burst require distant compact sources: the energy necessary to produce
the observed events is ≈ 1052 erg of γ rays released in less than 1 second. However, fairly high current
GRB activity is required to explain the observed UHECRs, while most of the GRBs with determined
redshifts are at z > 1 (i.e. far than 4 Gpc).

Exotics

Up to here, we have described the so-called bottom-up mechanisms for the acceleration of CRs to the
highest energies. In such mechanisms, particles have an initial energy small if compared to their fi-
nal energy, reached after acceleration in very strong fields. However, different mechanisms have been
proposed for the same purpose. To distinguish them from the bottom-up processes, they were called
top-down. The basic idea of top-down mechanisms is that massive2 X particles may decay to produce
the observed UHECR. Such a process is allowed because the observed cosmic rays have energies several
orders of magnitude lower than the X particle mass. These X particles can be either metastable (super-
heavy dark matter) or be emitted by topological defects (superconducting cosmic strings, monopoles,
monopoles connected by a string) at the present epoch (see [40] and Refs. therein).

The emission of X particles by topological defects is possible by superconducting cosmic string
loops, cusp evaporation in normal cosmic strings, and from intersecting cosmic strings. Successively,
X particles decay in leptons and quarks, the latter hadronizing in baryons and mesons, that decay
themselves along their decay chains into nucleons, γ−rays and neutrinos.

On the other hand, X particles could be remnants of the early Universe, with a very long lifetime,
probably much larger than the age of the Universe. Because of their large mass, and under the hypothesis
that they provide a significant fraction of dark matter, such particles would be gravitationally attracted
to the Galaxy and to the local supercluster. There, their density could well exceed the average density
in the Universe and a significant anisotropic distribution of UHECRs’ arrival directions is expected.

At variance with bottom-up models, producing charged nuclei, top-down mechanisms produce neu-
trinos, γ−rays and only a small number of protons, with a power-law energy spectrum of index γ = 1.5.
Hybrid models, which include elements of both groups, are also investigated. For instance, in the
Z−burst model UHE neutrinos are generated in the Universe: they annihilate on the nonrelativistic
relic antineutrinos (and vice versa) to produce the Z−boson, by νf + νf −→ Z, with an enhanced,
resonant cross section of O(GF ) ∼ 10 nb. The result of the resonant neutrino annihilation is a hadronic
Z−burst 70% of the time, which contains, on average, thirty photons and 2.7 nucleons with energies
near or above the GZK cutoff energy of 50 EeV. These photons and nucleons produced within our Su-
pergalactic halo may easily propagate to Earth and initiate air showers above such an energy threshold
[44].

1.5 Extensive air showers

Direct measurements of CRs are possible only up to an energy around 1015 eV. Above this energy,
the number of particles per unit of time, area and solid angle, namely the flux, is very low. In order
to increase the number of detected particles, it is necessary to increase both the size of detectors and

2The mass of such particles should be larger than 1012 GeV. For comparison, the GUT scale ranges from 1014 GeV to
1017 GeV, whereas the Planck scale is ≈ 1.22× 1019 GeV.
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their observation time: ground based experiments are the only ones able to cover surfaces ranging from
hundreds of m2 to thousands of km2.

Figure 1.8: Schematic representation of an extensive air shower. A CR interacts with an atom or a molecule in the atmo-
sphere and generates cascades of secondary particles, including nucleons, mesons, muons, electrons, positrons
and photons at ground level.

Extensive air showers (EAS) are the particle cascades generated by the interaction of an UHECR
with an atom or a molecule in the atmosphere, which acts like a calorimeter of variable density. In
Fig. 1.8 we show a schematic representation of an extensive air shower. The cascades of secondary
particles mainly develop through hadronic interactions, decays and energy-loss because of the emission
of electromagnetic radiation. At ground level nucleons, mesons, muons, electrons, positrons and photons
are generally observed. A common approach to the study of EAS is to consider three main components: i)
electromagnetic, consisting of electrons, positrons and photons, ii) muonic, consisting of muons generated
by the decay of charged mesons, and iii) hadronic, consisting of nucleons and mesons. For instance,
a 1019 eV primary proton produces at sea level more than 1010 particles: 99% of such particles, with
energy between 1 and 10 MeV, contributes to the electromagnetic component, transporting ≈ 85% of
total energy; the remaining 1% of particles are either muons, with an average energy of about 1 GeV
(carrying about 10% of the total energy), few GeV pions (about 4% of the total energy) and, in smaller
proportions, neutrinos and baryons [25]. A realistic modeling of EAS is rather difficult, because of
the complex dynamics of interactions and decays to which the large number of secondary particle are
subjected to. A simplified approach in the case of the electromagnetic cascade is due to Heitler [45],
who had previously developed the theoretical background for the stopping of fast particles and positron
creation with Bethe [46], and the passage of fast electrons with Bhabha [47]. Recently, a similar approach
has been adopted to model hadronic showers [48]. In both cases, the main idea is to describe the cascade
as a tree: the path from the sea level to the point where the cascade begins is divided into several slices.
For electromagnetic cascades the length of each slice is equal to the radiation length, whereas in the case
of hadronic cascades, it is equal to the interaction length. At each step, particles split their energy into
two or more particles with smaller energy and this mechanism continues until a certain critical energy
is reached. Such models are schematically represented in Fig. 1.9, and we will describe them in more
detail, in the following.

Electromagnetic cascade. The electromagnetic cascade is originated by the decay of neutral mesons
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Figure 1.9: Heitler models for development of electromagnetic (a) and hadronic (b) cascades. Picture from [48].

producing high energy photons. The shower path is divided into n steps, and the interaction step-length
is given by d = λr log 2, being λr the radiation length λr of the medium (λr = 37 g/cm2 in air). At each
step all particles interact, producing two secondary particles of equal energy: each photon produces an
electron/positron pair, whereas electrons and positrons lose half of their energy by emitting a photon
because of bremsstrahlung. The cross sections of processes are considered as independent of energy and
collision energy losses are totally ignored. If E0 is the energy of the primary photon, after n steps a
number Nn = 2n of secondary particles is expected, each one with energy En = E0/Nn. The shower
development continues until En becomes smaller than a critical energy ǫγ (≈ 80 MeV in air), more
precisely when the rate of energy loss by electrons via bremsstrahlung is equal to the rate of energy loss
by ionization. The number of particles reaches a maximum value Nmax = E0/ǫγ and increases no more
until reaching the sea level. The atmospherical depth Xmax at which Nmax is reached depends on the
first interaction point X0, and is defined by

Xmax = X0 + λr log
E0

ǫγ
. (1.8)

The elongation rate, defined as the rate of evolution of Xmax with energy, is defined by

Dγ
10 ≡

dXmax

d log10E0
= 2.3λr, (1.9)

that is ≈ 85 g/cm2 in air. Monte Carlo simulations show that such predictions, obtained from a very
simplified approach, qualitatively describe the electromagnetic shower development, with differences
smaller than one order of magnitude.

Hadronic cascade. The hadronic cascade is originated by the decay of charged mesons producing
high energy muons (and neutrinos). The approach is similar to that of the electromagnetic shower,
although, in this case, the relevant parameter is the hadronic interaction length λh instead of λr. Another
important difference is in the production of particles at each step: in fact, hadronic interactions produce
multiple particles at each step. In this recent Heitler model for hadronic showers, it is assumed that
2Nπ charged pions and Nπ neutral ones are produced per interaction. Neutral pions contribute to the
electromagnetic shower because of the decay π0 −→ γγ, whereas π+ and π− continue to interact until
their decay rate is more likely than a new interaction (the critical energy in this case is ǫπ ≈ 20 GeV in
air). The decay of charged pions produce muons via π −→ µνµ, contributing to the muonic component
of the EAS. In this case, the simplified model assume that i) interaction length and pion multiplicity
do not depend on energy, ii) one third of the available energy goes into the electromagnetic component

13



while the remaining 2/3rd continues as hadrons [48]. It is worth remarking that the density profile of
the atmosphere is not constant and the critical energy is larger high above ground than at see level
and deep showers will produce fewer muons. The number of steps needed to reach the critical energy is
simply given by nn = log (E0/ǫπ) / log(3Nπ).

By assuming that all pions decay into muons at the critical energy, the number of muons in the shower
will be Nµ = (2Nπ)

nc , or, equivalently, Nµ = (E0/ǫπ)
β , where β = log(2Nπ)/ log(3Nπ). For pion energy

between 1 GeV and 10 TeV, Nπ = 5 (hence, β ≃ 0.85) correctly describes the corresponding showers.
At variance with the number of electrons in the electromagnetic shower, which grows linearly with the
primary energy, the number of muons nonlinearly grows at a slower rate, strongly depending on the value
of β. Such a parameter depends on the multiplicity and on the inelasticity of the hadronic interactions.
Simulations show that the value of β ranges from 0.9 to 0.95, compatible with the assumption that only
half of the available energy goes into the pions at each step (rather than all of it, as previously assumed)
[49].

Moreover, at variance with the case of electromagnetic cascades, the position of shower maximum
is more difficult to be determined. The larger cross section and the larger multiplicity at each step
will reduce the value of Xmax while the energy evolution of those quantities will modify the elongation
rate. Hence, this simplified model only partially accounts for real observations. However, a more precise
result can be obtained by mean of simulations. Assuming a proton-air cross section of 550 mb at 1 EeV
and a rate of change of about 50 mb per decade of energy [50], the interaction length becomes

λh ≃ 90− 9 log

(
E0

EeV

)
g/cm2. (1.10)

If we assume that the first interaction initiates 2Nπ electromagnetic cascades of energy E0/6Nπ, and
Nπ ∝ (E0/PeV)1/5 for the evolution of the first interaction multiplicity with energy [48], the elongation
rate reads

Dp
10 =

dXmax

d log10E0
=
d (λh log 2 + λr log [E0/(6Nπǫγ)])

d log10E0

=
4

5
Dγ

10 − 9 ln 2 ≃ 62 g/cm2, (1.11)

in agreement with simulations. Such a value has been obtained under the hypothesis that the primary
UHECR is a proton. The extension to heavier primary nuclei can be obtained by adopting the super-
position model, where the nuclear interaction of a nucleus with atomic number A is simply viewed as the
superposition of the interactions of A nucleons of individual energy E0/A. It follows that showers from
heavier nuclei develop faster than those from lightest ones. As a direct consequence, pions in the hadronic
cascade reach their critical energy faster, increasing the relative number of muons with respect to the
electromagnetic component. Hence, showers induced by nuclei will develop higher in the atmosphere,
with XA

max = Xp
max − λr logA, and will have a larger number of muons, namely NA

µ = Np
µA1−β .

It is evident that the direct measurement of Xmax and Nµ provides information about the mass of the
primary cosmic ray. The predicted muon distributions depend on the assumptions on hadron production
in air showers. This is evident in Fig. 1.10 where the expected number of muons and electrons is shown
for showers initiated by proton, iron, and gamma-ray primaries, as calculated with different interaction
models.

EAS detection and reconstruction

In order to infer energy, mass and charge of the primary particle, the EAS produced by a high energy
cosmic ray is observed and the main features of the reconstructed shower are measured. The arrival
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Figure 1.10: Expected number of muons and electrons in vertical showers, at sea level, originated by proton, iron and
gamma-ray primaries. The curves show the full with at half maximum of the distributions for different
primary particles and energies, as obtained with three different hadronic models [26].

direction of the primary CR generating the EAS is estimated by observing the shower development and,
in particular, by reconstructing the shower axis. Energy can be estimated by measuring the density of
secondary particles at ground level as a function of the distance from the shower axis, i.e. the lateral
distribution function (LDF), or by measuring the number of particles as a function of the atmospherical
depth, i.e. the longitudinal development (LD).

For such purposes, two main kind of detectors are used to detect CRs: i) the surface detector (SD),
consisting of an array of several sensors (scintillators, water Cherenkov tanks, muon detectors, Cherenkov
telescopes) spread over a large area; ii) the fluorescence detector (FD), for CRs with energy above 1017 eV,
consisting of one or more telescopes measuring the fluorescence light emitted isotropically by nitrogen
molecules in the atmosphere, adopted as a giant calorimeter, excited along the shower trajectory because
of their interaction with the electromagnetic cascade.

Surface detector. Reconstruction of the primary particle parameters is based on timing for the
geometry and on the distribution of signal densities as a function of the lateral distance to the shower
axis for the energy. From the position of the different detectors and from the onset of the shower front
signal recorded in each of them, one can reconstruct the shower axis and hence the original cosmic ray
direction. Precision of one to three degrees are usually obtained given the large base line of the detector
spacing (1 km). For the energy, the detector positions are projected onto the plane transverse to the
shower axis and the lateral distribution function (LDF) is adjusted to the measured signals. In the
case of UHECRs, the signal at an optimal distance ropt, depending on the energy range and the array
spacing, can be used for such a purpose. At ropt the sum of the fluctuations from shower to shower and
of the statistical fluctuations from particle counting are minimum. Hence, the LDF varies for different
experiments. In many cases, it behaves like

S(r, θ, E) = kr[β(θ,E)+r/r0], (1.12)

where r is in meters, θ is the zenith angle and β(θ, E) = a+ b sec θ. Once the attenuation of the signal
due to the zenith angle is accounted for, an estimator of the energy is obtained by E ∝ S(ropt, θref)

α,
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Figure 1.11: Example of EAS detection using a surface array. The upper right insert shows the Auger surface array. Each
dot representes a detector the spacing between them is 1.5 km. The lower insert shows details of the footprint
of the shower with the estimated contours of the particle density levels. The curve represents the adjusted
LDF (lateral distribution function) and the red point the measured densities as a function of the distance to
the shower core [25].

with α ≈ 1, from the corrected density at ropt. In Fig. 1.11 we show an example of detection using a
surface array.

To reconstruct the primary parameters, a minimum of three detectors with signal is necessary. The
spacing between those detectors will determine the array energy threshold. For a vertical shower the 500
m spacing of the trigger stations in Haverah Park corresponds to a threshold of a few 1016 eV, while the
1.5 km separation of the Pierre Auger Observatory stations gives a few 1018 eV. Unfortunately, the SD
does not provide information about Xmax, and this is a strong limitation to this technique for primary
identification, which requires the use of Monte Carlo simulations. For a better primary identification,
the number of muons can be measured with buried detectors.

Fluorescence detector. A direct measurement of Xmax can be done with the fluorescence technique,
exploiting the light emitted between 300 and 420 nm by nitrogen molecules excited by charged secondary
particles in the EAS. Such fluorescence light is emitted isotropically and can be detected with appropriate
telescopes. The fluorescence yield is about 4 photons per electron per meter at ground level pressure.
Under clear moonless night conditions, using square-meter scale telescopes and sensitive photodetectors,
the UV emission from the highest energy air showers can be observed at distances in excess of 20 km
from the shower axis. This represents about two attenuation lengths in a standard desert atmosphere
at ground level. Such a large aperture, instrumented from a single site, makes this technique a very
attractive alternative to ground arrays despite a duty cycle of about 10%.

Fluorescence photons reach the telescopes in a direct line from their source. Thus the collected image
reflects exactly the development of the electromagnetic cascade. From the fluorescence profile it is in
principle straightforward to obtain the position of the shower maximum and a calorimetric estimate of
the primary energy. In practice a number of corrections must be made to account for the scattering
and the absorption of the fluorescence light. Also pollution from other sources such as the Cherenkov
component which can be emitted directly, or diffused by the atmosphere into the telescope, must be
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Figure 1.12: Scheme of a hybrid detector of UHECRs. The extended air shower is observed with both surface and
fluorescence detectors, improving the reconstruction of the original event.

carefully evaluated and accounted for. A constant monitoring of the atmosphere and of its optical
quality is necessary together with a precise knowledge of the shower geometry for a careful account for
those corrections. Unfortunately, a single telescope is not sufficient to provide a satisfactory angular
resolution on the arrival direction of the primary CR. A standard improvement involves the use of
a second telescope, providing, from a different position, a stereo reconstruction of the shower with a
precision of the order of few degrees. Such a technique has been adopted, for instance, by the HiRes
detector [51].

The amount of fluorescence light emitted along the shower axis is proportional to the number of
electrons in the shower. Hence, the total energy of the shower can be estimated by the integral of the
longitudinal development (LD), knowing that the average energy loss per particle is ≈2.2 MeV/g cm−2.
The LD is generally parameterized by the Gaisser-Hillas function [52], depending on 4 parameters:

N(X) = Nmax

(
X −X0

Xmax −X0

)(Xmax−X0)/λ

exp

[
Xmax −X

λ

]
, (1.13)

being X0 the depth of first interaction. However, several corrections should be taken into account,
such as the missing energy carried by neutrinos, the hadrons interacting with nuclei (whose energy
is not converted into fluorescence) and penetrating muons, whose energy is mostly dumped into the
Earth. Such a missing energy correction is calculated using detailed simulations and varies with energy,
composition and the interaction model used. Additionally, the calibration of telescopes should be done
frequently, in order to avoid a wrong estimation of the measured fluorescence light.

Hybrid detector. The two detection techniques described so far are somehow complementary. The
SD has the main advantage of allowing a duty cycle of almost 100%, whereas the FD may operate
only if the background light (human-made, moon, etc) is negligible. As we have seen the flux of CRs
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rapidly decreases for increasing energy. Hence, a SD of a given size, whose sensors are separated by a
fixed distance D each other, is able to detect only a fraction of EASs, i.e. those initiated by primary
CRs with energy ranging between a minimum and a maximum value: such energy thresholds fix the
operational limits of the SD. However, the maximum attainable energy can be increased by increasing
the size of the SD, whereas the minimum threshold can be decreased by increasing the number of sensors
and reducing their distance. In the case of the FD, the atmospherical depth of the shower maximum
increases with energy: in order to vary the operational limits in energy, it is necessary to vary the
inclination of telescopes.

Only a combination of both techniques should guarantee precise measurements of the primary arrival
direction, its energy and the shower maximum. The Pierre Auger Observatory has been the first
experiment to adopt both techniques in a hybrid detector (see Fig. 1.12), taking advantage from both
approaches. It will be discussed in more detail in the next section3.

1.6 UHECR detection: the Pierre Auger Observatory

The first evidence for the existence of UHECR has been provided by Volcano Ranch (USA), the pioneer-
ing array of surface detectors operated by a group from MIT, under the leadership of John Linsley and
Livio Scarsi [53]. Since then, many other fundamental experiments have been built around the world
to observe UHECR, with energy and angular resolution increasing over time. Here, we mention only
a few among them, as Haverah Park (UK) [54], Yakutsk (Russia) [55], Fly’s eye (USA) [56], SUGAR
(Australia) [57], AGASA (Japan) [58] and Hires (USA) [51]. All of such experiments, together with the
most recent ones, as the Pierre Auger Observatory (Argentina) [59] and Telescope Array (USA) [60],
and the upcoming ones, as Auger North [61] or JEM-EUSO (outer space) [62], allowed (and will allow)
us to explore energy regions well beyond those ones available to the most powerful man-made particle
accelerator (i.e. the large hadron collider at CERN, Switzerland).

However, although many experimental efforts have been made to explore CRs in the ultra-high energy
region, a conclusive answer to their origin, their acceleration mechanism and their mass composition is
still missing. In particular, at the end of the 20st century, the two largest UHECR experiments, namely
the Akeno Giant Air Shower Array (AGASA) and the High Resolution Fly’s Eye (HiRes), provided
somehow contradicting measurements of both the energy spectrum and the clustering of the arrival
directions.

In the previous sections we have mentioned the longstanding hypothesis which predicts that the flux
of the highest energy cosmic rays should be suppressed above 1019.6 eV, as cosmic rays from distant
sources will interact with the cosmic microwave background via photo-pion production until their energy
drops below this threshold energy. Such a mechanism is responsible for the so-called GZK suppression.
Unfortunately, the detection of such an effect through indirect measurements is not unambiguous, be-
cause in fact several cosmic rays with higher energy have been observed over the years. One of the first
results, at the end of 90s, disfavoring the GZK hypothesis comes from the AGASA collaboration, whose
published energy spectrum showed no indication of a high-energy suppression [63], reporting 11 events
above 1020 eV. In contrast, the monocular-mode energy spectra measured in the same years by the High
Resolution Fly’s Eye detectors supported the existence of a GZK feature, with an evident suppression
at the highest energy [64, 65].

Another major source of uncertainty about the understanding of UHECRs came from the anisotropy
and clustering measurements of the highest energy events, reported by the AGASA collaboration at 1018

and 1019 eV [66, 67], but not confirmed by the HiRes collaboration [68–70].

3This section and the next one have been largely inspired to the two recent and nice reviews about UHECR physics,
namely [26] and [25].
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The AGASA and HiRes, representing the second generation of UHECR experiments, used radically
different techniques to determine the primary energy (AGASA was a ground array and HiRes an air
fluorescence detector), and the statistical and systematic errors had fundamentally different sources.
Although it is difficult to assign a significance to the discrepancies between the two energy spectra,
a direct comparison between the two measurements put in evidence the need for a new independent
experiment, able to measure the energy spectrum with the highest achievable accuracy. Moreover, such
an ideal experiment should had to be able to measure the arrival direction of UHECRs with the best
angular resolution ever, in order to shed light on the possibility of astronomy with charged particles.

The project for such a new experiment was proposed by Jim Cronin and Alan Watson in 1992. The
new observatory should extend on a considerable surface and should make use of an hybrid technique,
combining the best features of a giant surface array and several different fluorescence detectors. In 2004,
the Pierre Auger Observatory, the largest experiment ever built, started data taking, inaugurating the
third generation of UHECR detectors.

In this section, we will describe the Pierre Auger Observatory, giving particular attention to the
selection and the reconstruction of events observed with the surface detector only, because of interest
for the studies presented within this work. However, we will also briefly describe the detection and the
reconstruction of events by using the fluorescence detector and the hybrid technique.

1.6.1 The detector

Figure 1.13: Left panel: General layout of the Pierre Auger Observatory, extending over 3000 km2. It consists of an SD
array of 1600 water-Cherenkov stations and 4 FDs, each with 6 telescopes. Right panel: particular of a FD
building and a SD station.

The Pierre Auger Observatory is located at 35.2 S latitude and 69.5 W longitude at 1400 m above
sea level, corresponding to the atmospheric depth of X = 880 g/cm2. It is an hybrid detector, i.e. it
consists of both a surface (SD) [71] and fluorescence (FD) [72] detector, as shown in Fig. 1.13. The
monitoring of atmospherical conditions and cloud coverage, playing a central role in the data analysis,
is employed with weather stations placed close to each FD and to the central laser facility (CLF), and
with Lidars, whose position is shown in the same figure [73, 74].

The SD consists of 1660 water-Cherenkov stations that detect photons and charged particles in air
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showers at ground level. Each station is a plastic tank of 10 m2 area and 1.2 m height hosting 12000 l
of ultra purified water contained in a Tyvek reflective liner. The Cherenkov light generated by charged
particles of the shower crossing the tank is registered by three 9” photomultiplier tubes. Each detector
operates autonomously with its own front-end electronics and communication system, while a solar
energy unit and batteries provide the required 10 W electrical power. The timing is obtained by a GPS
unit and the communications achieved via a wireless system. The station electronics is made up of the
front-end electronics (FE), a station controller composed of a microprocessor performing local software
processing, a slow control module, a GPS receiver and a time tagging unit. On the FE-board, the PMT
signals are filtered and fed to a 10-bit ADC which samples at 40 MHz: the signal recorded by the FADC
is referred to in units of channels (ch), with a range of 0-1023, corresponding to an input range of 0-2
V. Each FADC bin corresponds to 25 ns. The triangular grids of stations with 1.5 km spacing spans
over 3000 km2, and operates with a duty cycle of almost 100%.

The surface array is overlooked by 4 buildings (called Los Leones, Los Morados, Loma Amarilla and
Coihueco) of the fluorescence detector. Each of them includes 6 fluorescence telescopes that observe the
longitudinal profile of the shower. Each fluorescence telescope records the fluorescence light isotropically
emitted by the nitrogen molecules of the atmosphere excited by the charged particles during the shower
development in air. It consists of a Schmidt optical system with a circular diaphragm, positioned at the
centre of curvature of a spherical mirror, that defines the aperture of the system. UV transmitting filters
are installed in the entrance aperture and just inside it a ring of corrector lenses is placed to increase the
effective aperture by about a factor 2 while preserving the quality of the optical aberrations. The light
is focused by a large spherical mirror onto a camera of 440 phototubes which allows the 30◦ azimuth
times 28.6◦ elevation field of view [75]. Since the FD can only operate during clear and moonless nights,
its duty cycle is reduced to about 13%.

1.6.2 Event selection of the surface detector array

The SD array, completed in June 2008, is a regular grid of stations continuously taking data since
January 2004, whose operational status is monitored every second. The event selection is based on
a hierarchical series of conditions, three online triggers (called T1, T2 and T3) and two offline event
selection criteria (called T4 and T5).

For each station two levels of local trigger are defined (the first level or T1 and the second level or
T2) both resulting from the OR condition of two different algorithm (“Simple Threshold” and “Time-
Over-Threshold”, or ToT). At the T2 level the expected rate of random stations is reduced to 1-2 Hz
with respect to about 100 Hz of the T1. The trigger strategy and hierarchy are described in details in
Ref. [76]. A SD trigger is formed when at least 3 not-aligned T2 stations are in spatial and temporal
coincidence (T3). Due to this requirement the SD array is fully efficient for the detection of air showers
above 1018.5 eV (≈ 3 EeV), for all zenith angles between 0◦ and 60◦, independently of the position of
the impact point and of the mass of the primary particle.

Once a T3 is formed, all FADC signals from detectors passing the T2 are sent to the central data
acquisition system (CDAS), as well as those from detectors passing the T1 but not the T2, provided that
they are within 30 µs of the T3. The trigger of the array is realised in two modes. The first T3 mode
requires the coincidence of at least three detectors that have passed the ToT condition and that meet
the requirement of a minimum of compactness, namely, one of the detectors must have one of its closest
neighbours and one of its second closest neighbours triggered. It is called "ToT2C1&3C2", where Cn

indicates the nth set of neighbours (see Fig. 1.14). Once the spatial coincidence is verified, timing criteria
are imposed: each T2 must be within (6+5Cn)µs of the first one. An example of such T3 configuration
is shown in Fig. 1.14, left. Since the ToT as a local trigger has very low background, this trigger selects
predominantly physics events. The rate of this T3 with the full array in operation is around 1600 events
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Figure 1.14: Example of T3 configurations: the 3-fold T3 mode ToT2C1&3C2 is shown on the left and the 4-fold mode
2C1&3C2&4C4 on the right (see text for the definitions). C1, C2, C3, C4 indicate the first, second, third and
fourth sets of neighbours, respectively at 1.5, 3, 4.5 and 6 km from a given detector.

per day, meaning that each detector participates in an event about 3 times per day. This trigger is
extremely pure since 90% of the selected events are real showers and it is mostly efficient for showers
below 60◦. The 10% remaining are caused by chance coincidences due to the permissive timing criteria.
The second T3 mode is more permissive. It requires a four-fold coincidence of any T2 with a moderate
compactness. Namely, among the four fired detectors, within appropriate time windows, at least one
must be in the first set of neighbours from a selected station (C1), another one must be in the second
set (C2) and the last one can be as far as in the fourth set (C4). This trigger is called "2C1&3C2&4C4".
Concerning timing criteria, we apply the same logic as for the "ToT2C1&3C2". An example of such
T3 configuration, is shown in Fig. 1.14, right. Such a trigger is efficient for the detection of horizontal
showers that, being rich in muons, generate in the detectors signals that have a narrow time spread,
with triggered detectors having wide-spread patterns on the ground. With the full array configuration,
this trigger selects about 1200 events per day, out of which about 10% are real showers [76].

Two successive levels of selection are implemented. The first one (physics trigger) is based on space
and time configurations of the detector, besides taking into account the kind of trigger in each of them.
The second one (fiducial trigger) requires that the shower selected by the physics trigger is contained
within the array boundaries, to guarantee the accuracy of the event reconstruction both in terms of
arrival direction and energy determination. The logic of this off-line trigger system and its connection
to the DAQ triggers is summarized in Fig. 1.15.

Physics trigger

The physics trigger, T4, is needed to select real showers from the set of stored T3 data. Two criteria are
defined, with different aims. The first T4 criterion, so-called 3ToT, requires 3 nearby stations, passing
the T2-ToT, in a triangular pattern. It requires additionally that the times of the signals in the 3
stations fit to a plane shower front moving at the speed of the light. The number of chance coincidence
passing the 3 ToT condition over the full array is less than one per day, thanks to the very low rate
of the T2-ToT. Due to their compactness, events with zenith angles below 60◦are selected with high
efficiency, i. e. more than 98%.

The second T4 criterion, so called 4C1, requires 4 nearby stations, with no condition on the kind of
T2. In this case also, it is required that the times of the signals in the 4 stations fit to a plane shower
front moving at the speed of the light. This 4C1 trigger brings to ≈100% the efficiency for showers
below 60◦.

Besides disentangling accidental events, there is also the need to identify, and reject, accidental
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Figure 1.15: Schematics of the hierarchy of the event selection of the Auger surface detector.

detectors in real events, i.e. detectors whose signals are by chance in time with the others, but that in
fact are not part of the event. To this aim, we define a "seed" made by 3 neighbouring detectors in a
non-aligned configuration. If there is more than one triangle of stations, the seed with the highest total
signal is chosen. If the T4 is a 3 ToT, only ToT detectors can be considered to define the seed; if it is a
4C1, also TH detectors can be included. Once the triangle has been determined, the arrival direction
is estimated by fitting the arrival times of the signals to a plane shower front moving with the speed of
light. Subsequently, all other detectors are examined, and are defined as accidental if their time delay
with respect to the front plane is outside a time window of [−2µs : +1µs]. Detectors that have no
triggered neighbours within 3 km are always removed.

After the selection chain (both event selection and accidental detectors removal), 99.9% of the
selected events pass the full reconstruction procedure, that is arrival direction, core position and S(1000)
are determined.

Fiducial trigger

The need for a fiducial trigger, T5, mainly arises from events falling close to the border of the array,
where a part of the shower may be missing. In Fig. 1.16 a hybrid event is shown, that triggered the SD
and one of the FD telescopes, where a part of the SD information is missing due to its position on the
border of the array. Such events could have wrong core positions, and consequently, incorrect energies,
as in this example where the energy derived by SD is more than 4 times larger than the one estimated
by FD (1.4× 1019 eV instead of 3× 1018 eV). The main task of the fiducial trigger is thus to select only
events well contained in the array, ensuring that the shower core is properly reconstructed.

The fiducial trigger should be applied a priori on the events, to be independent of the reconstruction
procedure. The T5 adopted requires that the detector with the highest signal has all its 6 closest
neighbours working at the time of the event (i.e., it must be surrounded by a working hexagon). This
ensures adequate containment of the event inside the array. Even in the case of a high energy event that
falls inside, but close to the border of the array, where part of the data may be missing, information from
the seven detectors closest to the shower core ensures a proper reconstruction. Applying this condition,
the maximum statistical uncertainty in the reconstructed S(1000) (defined in the next section) due to
event sampling by the array is ≈ 3% [76]. It has to be noted that this criterion also discards events that,
though contained, fall close to a non-working detector: this is an important issue because, due to the
large number of detectors distributed over 3000 km2, about 1% of the detectors are expected to be not

22



Figure 1.16: Example of a hybrid, non-T5, event: the event falls on the border of the SD array, triggering only four
detectors. Filled circles indicate the triggered ones, open circles the non-triggered active ones. The dimensions
of the filled circles are proportional to the measured signal. The shower detector plane reconstructed by FD
(dash-dotted line) indicates that the core is within the triangle of detectors. The SD only reconstruction
places it outside the array (cross), artificially increasing the event energy.

functioning at any moment, even with constant detector maintenance. For the fully completed array,
and taking this into account, the application of the T5 condition reduces the effective area by 10% with
respect to the nominal one.

The use of the fiducial trigger allows the effective area of the array to saturate to the geometrical
one above a certain primary energy. Indeed, with no conditions on event containment, the acceptance
would increase with increasing energy, since showers falling outside the borders of the array might still
trigger sufficient detectors to be recorded; the higher their energy, the farther the distance [76].

The officially adopted T5 (6T5) requires that the station with the highest signal is surrounded by a
working hexagon (i.e. the six closest neighbor station must be working at the time of the event). Such
a trigger is rather conservative, ensuring that the maximum statistical uncertainty in the reconstructed
S(1000) due to event sampling by the array is 10%. Moreover, the 6T5 eliminates from the data set a
large fraction (of the order of 25%) of events passing the T4 requirement: such events are on the border
of the array of falls close to a un-operating station.

However, for events with very high energy, the 6T5 criterion is too strict. In fact, the high multiplicity
of such events provide enough information for a reliable reconstruction in the majority of cases. A more
relaxed criterion can be adopted in these cases, of interest for the studies presented in the last chapter
of the present thesis. Such a new criterion, called 5T5-Pos (5T5 in the following), make use of the
reconstructed shower core, requiring that 5 of the 6 closest neighbors are active at the time of the event
and that its core is contained in an equilateral triangle of active stations.

Integrated exposure of the surface detector

The full efficiency of the SD trigger and event selection is reached at 3× 1018 eV. Above this energy, the
calculation of the exposure is based solely on the determination of the geometrical aperture and of the
observation time.

With respect to the aperture, the choice of a fiducial trigger based on hexagons, as explained above,
allows us to exploit the regularity of the array very simply. The aperture of the array is obtained as a
multiple of the aperture of an elemental hexagon cell, acell, defined as any active detector with six active
neighbours, as shown in Fig. 1.17.
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Figure 1.17: Scheme of an hexagon of detectors: the elemental hexagon cell, acell, is the shaded area around the central
detector.

At full efficiency, the detection area per cell is 1.95 km2. The corresponding aperture for showers
with θ < 60◦ is then acell ≃ 4.59 km2 sr. The number of cells, Ncell(t), is not constant over time due to
temporary problems at the detectors (e. g. failures of electronics, power supply, communication system,
etc...). Ncell(t) is monitored second by second. The second-by-second monitoring provides at the same
time the aperture of the array per second, acell × Ncell(t), as well as the observation time with high
precision. To calculate the integrated exposure over a given period of time, the aperture of the array,
Ncell(t) × acell, is integrated over the number of live seconds. This calculation is very precise, since
it is based on a purely geometrical aperture and a very good time precision. The uncertainty is 3%.
The standard units for the exposure of large detectors as the SD of the Pierre Auger Observatory are
km2 sr yr (sometimes also reported as 1 Linsley). The exposure of some experiments, past and current,
as well of future ones, is shown in Fig. 1.18.

Figure 1.18: Evolution of the exposures of past and current UHECR observatories over time, compared to that of the
Pierre Auger Observatory (south). Projected exposures for Auger North (if construction start in 2016) and
JEM-EUSO (if launched in 2017, including 20% duty cycle) are also shown. This plot has been readapted
from [77] (see Refs. therein for details about the exposure of each observatory).

For the data set considered in our study, the 5T5 exposure is about 20% larger than the 6T5 one.
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1.6.3 Event reconstruction

SD event reconstruction

The signal-weighted and time-weighted barycenters of the stations are set as the distance and time
origins. A shower track is described by the following equation:

− â(~x(t)−~b) = c(t− t0) (1.14)

where ~x(t) is a point moving with the speed of light along the straight shower track of normalized
axis â ≡(u,v,w), passing the origin at time t0. The shower plane at this stage is treated as a plane
perpendicular to the shower axis (approximate description), therefore the time t(~x) when it passes
through a given point at ground ~x ≡(xi,yi,zi) is obtained by projecting to the shower axis:

ct(~x) = ct0 − (~x−~b)â (1.15)

The shower axis can be determined by minimizing the squares of the time differences between the
measured signal start ti (with variance σ2ti) and the model time prediction t~xi

for each station:

χ2 =
∑

i

[ti − t(~xi)]
2

σ2ti
=
∑

i

[cti − ct0 + ~xiâ]
2

c2σ2ti
=
∑

i

[cti − ct0 + xiu+ yiv + ziw]
2

σ2i
(1.16)

with ~xi = ~xi −~b the position, σi = cσti and u, v, z satisfying the constraint u2 + v2 + z2 = 1. The axis
determination is thus a non-linear problem. Nevertheless from a simplified linear model an approximate
solution can be obtained and used as a starting point to more elaborate fitting procedures. First the
estimated core location is projected along the shower axis â towards the plane defined by the barycenter
~b and a normal n̂ and replaced with a new estimation. The lateral dependence of the signal measured in
the tanks is modeled by S(r) = S(1000)fLDF (r), where fLDF (r) is a shape parametrization normalized
in such a way that fLDF (1000 m) = 1, and the parameter S(1000) is the signal intensity at 1000 m from
the shower axis. S(1000) a parameter is a good estimator for the cosmic ray energy, and it depends on
the incoming angle because of the shower attenuation in the atmosphere. Two types of LDF functions
can be used to describe the data, modified power law or modified NKG functions:

fLDF (r) =





(
r

r1000

)β+γ ln(r/r1000)

(
r

r1000

)β+γ ln(r300/r1000)

r ≥ r300
r < r300

(1.17)

fLDF (r) =

(
r

r1000

)β ( r + r700
r1000 + r700

)β+γ

(1.18)

where r300, r700, r1000 are evaluated respectively at 300, 700 and 1000 m, β and γ are slope parameters
to be determined from the fit procedure. Using the signal-weighted barycenter as the first estimation
for the core position and reasonable initial values for β and γ, the S(1000) parameter is pre-estimated
based on the signal in the station closest to the r = 1000 m reference. Then a fit with respect to S(1000)
and core location is performed. Depending on the number of candidate stations, β and γ are gradually
included as variable parameters in the LDF fit. In the next stage a realistic approximation of the shower
front is used, including a parabolic term to describe the shower front curvature, and a new estimation
of the axis and core location is found. With the new axis the LDF fit is performed again to get the final
reconstructed values.
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Figure 1.19: Left panel: Array layout of a real SD event measured at the Pierre Auger Observatory (ID 1153192). See
text for explanations relative to station colors. Right panel: Reconstructed lateral distribution function.

In such a way the dependence of the energy measurement on the predictions given by the hadronic
interaction models is extremely reduced. Typical results of this procedure are shown in Fig. 1.19 for a
real event (SD id=1153192) measured by the surface detector. The final reconstructed parameters of this
event are θ = 47.69◦ ± 0.15◦, φ = −93.90◦ ± 0.19◦ and S(1000) = (156.6± 10) VEM. The array layout
is shown in the left panel of the figure: candidate stations are represented with filled circles (in bluish
colors for on-time stations, in reddish colors for delayed stations), with size proportional to the square
root of the signal. Zero-signal (or silent) stations are denoted by small black opaque circles. Candidate
stations with black-rimmed circles have saturation in the high gain channel. The core position is shown
with a red circle with an arrow indicating the shower azimuth. In the right panel of the same figure, the
LDF fit of this event is shown: the signal of the candidate stations are plotted with black dots, while
the LDF fit and the corresponding 1σ confidence band is shown in green and gray. Zero signal stations
are plotted here as downward pointing blue triangles, while saturated-signal stations are represented as
upward pointing blue triangles.

The primary energy is calculated according to the constant intensity cut (CIC) procedure. The
S(1000) parameter is converted into a reference signal size S38◦ by

S38◦ =
S(1000)

1 + 0.92x− 1.13x2
, (1.19)

with x = cos2 θ− cos2 38◦. S38◦ may be regarded as the signal S(1000) the shower would have produced
if it had arrived at θ = 38◦. The energy conversion is provided by samples of golden hybrid events. For
these events the S38 parameter is compared to the FD energy estimate and a calibration curve is derived,
yielding the desired conversion EFD = αSβ

38, where α = (1.68±0.05)×1017 eV and β = 1.035±0.009 are
the values obtained from the fit, as shown in Fig. 1.20. The energy resolution is 15%, with a systematic
uncertainty of 22% [79].

Angular reconstruction and resolution. With the SD it is possible to determine the arrival direction
of cosmic rays from the secondary particles arriving to the ground. The bulk of these particles is grouped
in a thick nearly spherical pancake. The thickness of this spherical cap depends on the distance to the
shower axis and ranges from hundreds of nanoseconds at about 100 m from the axis to few microseconds
at 1000 m. The radius of curvature of the sphere depends on the altitude of the shower maximum and
thus on the cosmic ray composition and can be used to describe the shower front.
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Figure 1.20: Left panel: Correlation between logS38 and logEFD for a given golden hybrid data set used in the fit. The
full line is the best fit for the data. Right panel: Fractional difference between the calorimetric energy, EFD,
and the energy estimate of the surface detector, E, obtained by the calibration curve, for the selected events.
The signal intensity S38 is expressed in Vertical Equivalent Muons (VEM), where 1 VEM is the intensity
corresponding to one muon crossing the detector with zenith angle equal to zero [78].

The time of the first particle hitting the SD station is usually used as an estimator of the shower front
arrival time (Ts) at each station location. The arrival direction of a SD event is determined by fitting
the arrival time of the first particle (T1) in each station according to a shower front model. Simulations
indicate that a good representation of the shower front within 2 km from the shower axis is a spherical
cap roughly centered in the muon generation region. Since this region is usually located in the upper
atmosphere (about 5 km of altitude for vertical showers) one can consider a paraboloid approximation
to simplify the description of the curve. Therefore, the determination of the arrival direction can be
achieved by minimizing the expression:

χ2 =
∑

stations

1

σ2i

(
T1i − T0 +

u

c
xi +

v

c
yi −

d2i
2Rc

)2

, (1.20)

with respect to T0,u,v and R. The direction cosines are given by u and v, T0 is the shower arrival time
to the ground, and R is the radius of curvature. Even if at least four stations in the event are required
for determining R, a fixed value of R is used for events with less than 5 stations. In these cases R is
derived from simulations and is R[m] = 10−5 sec(θ) where θ is the zenith angle.

To estimate the arrival direction of the primary cosmic ray with the maximum possible precision, it
is also necessary to appropriately take into account the time uncertainty (σi) of each individual station
participating to the event. For this purpose a time variance model was developed in Ref. [80] based on
the shower properties at each station location.

The angular resolution, defined as the angular radius that would contain 68% of the reconstructed
events, is better than 0.9◦ above 10 EeV.

FD event reconstruction

First the shower detector plane (SDP) is determined. This plane is defined by the shower axis and the
location of the telescope detecting the event. The normal vector ~n of the SDP can be obtained with a

27



signal-weighted χ2 fit using the pointing directions ri of the triggered PMTs:

χ2 =
∑

i

(~n · ~ri)wi (1.21)

where the weights wi are proportional to the signal amplitude ∝ √
Si. A minimum number of 6 pixels

with pulse is considered to reconstruct the event. Initially all triggered pixels are included to provide
a first guess of the SDP. For the final SDP fit only the pixels within an interval of 2◦ around the trial
SDP have been used.

In the second phase of geometry reconstruction, the pixel timing information is used to determine
the orientation of the shower axis inside the SDP previously recovered. The problem is equivalent to
find the closest distance of the shower axis to the observer Rp and the axis inclination in the SDP χ0

(see left panel of Fig. 1.21). Defining T0 as the reference time when the shower is observed at a distance
Rp, the time difference of a photon arriving at the i-th PMT can be calculated taking into account the
time the shower has moved through the atmosphere ts and the propagation time of the photon to the
telescope tl:

ts =
Rp

c tan θi
tl =

Rp

cair sin θi
(1.22)

The shower is assumed to propagate with the speed of light in vacuum c, while the fluorescence
photons propagate with the corresponding speed of light in the atmospheric layer cair. Usually the
simplification cair ≈ c is applied and the time difference δt is given by:

δt = tl − ts =
Rp

cair sin θi
− Rp

c tan θi
∼ Rp

c
tan

θi
2

≈ Rp

c
tan

(
χ0 − χi

2

)
(1.23)

The axis parameters T0, χ0 and Rp are determined performing a time fit by minimizing the following
χ2:

χ2 =
∑

i

wi

[
T0 +

Rp

c
tan

(
χ0 − χi

2

)
− ti

]2
(1.24)

where wi are weights including the errors of the time measurements. Typically a minimum number of
8 pixels within an angular distance to the SDP of 2◦ take part in the time fit. While the SDP can be
reconstructed with high accuracy, the deficit of the FD-mono analysis is the exact determination of the
shower in the SDP.

A significant improvement in resolution can be achieved with the hybrid reconstruction. In this case
the shower’s footprint on ground is known from at least one tank information. This can be used as
additional data point for the time fit. The expected arrival time of the shower front at the i-th triggered
tank can be expressed as:

ttank
i = T0 +

~rtank
j · ~a
c

(1.25)

where ~rtank
i is the vector pointing from the FD observer to the i-tank and ~a is the shower axis vector

(see right panel of Fig. 1.21). This timing information is included in the previous χ2 minimization, thus
representing an important constraint in the shower geometry determination. It is clear that the time
offset between the SD and the FD has to be taken into account to obtain correct results. This time
offset can be estimated for example by analyzing the central laser facility shots data.

In Fig. 1.22 the 3D view (left panel) and the reconstructed time fit (right panel) of a hybrid event
(Auger event id=200513500999 - SD id=1364365 - FD eye 1, run 895, event 981 - date 2005/05/16) are

28



Figure 1.21: The shower geometry in the SDP in the FD-mono scheme and in the FD-hybrid scheme. The shower axis is
defined by the parameters Rp, T0 and χ0.

Figure 1.22: Array view and time fit for a hybrid event (Auger event id=200513500999). Note the colored group of tanks
involved in the event in the 3D view and the black square in the time fit representing the timing of the hottest
station.

shown. Note the group of tanks involved in the event in the 3D view and the black square in the time fit
representing the timing of the hottest station, offering an additional constraint in the geometry finding.

An additional possibility to improve the geometry determination, offered by the current detector
layout, is the stereo mode: a subset of the available events is measured by two or more FD eyes at
the same time. In such cases, the SDP are determined separately for each single FD eye and then the
shower axis is found by the intersection of these SDPs, without the timing information. The achieved
resolution depends on the accuracy with which the single SDPs are determined and on the intersection
angle among the SDPs.

Once the shower geometry is fully reconstructed, it is possible to determine the longitudinal profile
of the shower. This is implemented in several steps. A calculation of the light flux reaching the telescope
aperture is first carried out. See [81] for a review on different methods adopted to collect light. The
FADC pulses in each pixel, expressed in ADC counts, have to be associated with photons arriving at
the diaphragm, through the pixel calibration constants. For each FADC time bin (100 ns) it is possible
to define a vector ~R(t) lying on the SDP and pointing to the calculated shower position. The signal of a
given pixel i is considered in the light collection algorithm if the angular distance ζi = arccos(~R(t)·rpixeli )

between ~R(t) and the pixel pointing direction vector rpixeli is less than a given value ζopt. The optimum
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Figure 1.23: a) The camera view of a measured hybrid event (the same of Fig. 1.22). The shower appears as a sequence
of hit pixels colored according to their timings from violet to red and crossing in this case two Fd mirrors. b)
Reconstructed light at aperture. Different contributions to the light profile (fluorescence, direct and scattered
Cherenkov) are shown in different colors. c) Reconstructed longitudinal profile. The red line represents the
Gaisser-Hillas fit to data.

value of ζopt is scanned to maximize the signal to noise ratio S/N :

S

N
=

∑

time bins

ζi<ζopt∑

i

[nADC
i (t)− npedi ]

√√√√ ∑

time bins

ζi<ζopt∑

i

[σpedi ]2

(1.26)

where nADC
i is the digitized pixel signal, npedi is the ADC mean value of the pedestal and σpedi is the

variance of the pixel pedestal. Once ζopt has been fixed, the light flux at the diaphragm aperture is
calculated as 370 nm equivalent photons in 100 ns time bins t as:

n370γ (t) =

ζi<ζopt∑

i

C370
i (nADC

i − npedi ) (1.27)

In the standard reconstruction only the light detected by pixels within ζopt around the SDP is used
[82] and the fraction of fluorescence light lost outside ζopt is corrected for using the universal lateral
fluorescence light distribution from [83]. An alternative approach, the "spot method", assumes a model
for the light distribution at the telescope focal surface (the spot) and uses the light coming from all
pixels [81].

In Fig. 1.23a the typical profile structure of a measured hybrid event (the same of Fig. 1.22) is
shown. Fig. 1.23b the camera view is represented as a sequence of hit pixels, colored according to
their timings from violet to red and crossing two FD mirrors. In Fig. 1.23c the corresponding light at
aperture is shown as reconstructed with the above procedure. Different contributions to the light profile
(fluorescence, direct and scattered Cherenkov) are also plotted.

The last step is the profile reconstruction, which converts the fluorescence light profile recorded by the
telescopes to a determination of the energy deposit at a given atmospheric depth along the shower axis.
The profile reconstruction method so far adopted is presented and detailed in [84]. The light arriving
at the aperture is actually a combination of direct and scattered components induced by the shower
passage through the atmosphere, hence it is necessary to disentangle all different contributions. The
direct fluorescence light, emitted isotropically at a certain slant depth Xi and measured at the detector
at time ti, is proportional to the energy deposit. The number of fluorescence photons Nfluor

γ (Xi) and
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measured light flux yfluor
i produced in a slant depth interval ∆Xi are given by:

Nfluor
γ (Xi) = Y fluor

i

dE

dXi
∆Xi yfluor

i = diN
fluor
γ (1.28)

where dE/dXi is the energy deposited per unit depth at slant depth Xi, Y fluor
i is the fluorescence yield

(number of photons expected per unit deposited energy for the atmospheric pressure and temperature
at Xi) and di = εTi

A
4πr2i

. The photons are distributed over a sphere with surface 4πr2i , where ri denotes
the distance from the detector. Due to the atmospheric attenuation only a fraction Ti of them can be
detected, given a light detection efficiency ε.

The total light received at the detector at the time ti is obtained by adding the fluorescence, the
scattered and direct Cherenkov light contributions yi = yfluor

i +ycher dir
i +ycher scat

i . The aim of the profile
reconstruction is to estimate the energy deposit and/or the electron profile from the observed light flux.
In traditional methods [56] the Cherenkov light is iteratively subtracted from the measured total light
to obtain the fluorescence contribution, but a known drawback is that the method does not converge for
events with a large amount of Cherenkov light and the propagation of the uncertainties is critical. Instead
one can use the fact that the electron energy spectrum is universal in shower age si (no dependence on
primary mass or energy) [85–87], yielding the relation dE/dXi = N e

i αi, with αi average energy deposit
per unit depth per electron at shower age si = 3/(1 + 2Xmax/Xi).

It has been assumed that the shower induces light emission at a single wavelength λ, but in reality the
fluorescence yield shows distinct emission peaks and the number of Cherenkov photons is proportional
to 1/λ2. In a final reconstruction stage also the wavelength dependence of the detector efficiency and
the light transmission are taken into account.

A knowledge of the complete profile is required for the calculation of the Cherenkov beam and the
shower energy. Due to the limited field of view of the FD only a part of the profile is observed, therefore
an appropriate function for the extrapolation to unobserved depths is needed. The adopted choice is
the Gaisser-Hillas function [52]:

fGH(X) =
dE

dXmax

(
X −X0

Xmax −X0

)(Xmax−X0)/λ

e(Xmax−X0)/λ (1.29)

Finally, the calorimetric energy is estimated by integrating the Gaisser-Hillas function previously
determined over the energy deposit profile:

Ecal =

∫ ∞

0
fGH(X)dX = λ

dE

dXmax

(
e

ξ

)ξ

Γ (ξ + 1) (1.30)

with ξ = (Xmax − X0)/λ. To avoid the analytical propagation of the uncertainty over Ecal, the nor-
malization term of the Gaisser-Hillas function is replaced with Ecal/[λΓ(ξ+1)] and the minimization is
performed also with respect to Ecal. The error of the Ecal estimate is in this way directly obtained from
the fit procedure. It has to be noted that not all the energy of the shower goes in the electromagnetic
part, as it was considered above. Neutrinos escape undetected and muons need long path length to fully
release their energy. This is usually accounted for by multiplying the calorimetric energy with a correc-
tion factor finv determined from shower simulations to obtain the total primary energy Etot = finvEcal,
where finv is parameterized as finv = (a + bEc

cal)
−1 with a, b, c constants depending on the primary

composition and interaction model assumed.
In Fig. 1.24 we show a real hybrid event (top-left), together with the corresponding longitudinal

development (right) and lateral distribution function (down-left), summarizing the procedure described
so far and generally adopted for the reconstruction of the arrival direction, the energy and the elongation
rate of the UHE event.
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Figure 1.24: A real hybrid event (top-left) detected with the Pierre Auger Observatory. The corresponding longitudinal
development measured with the FD (right) and the lateral distribution function measured with the SD
(down-left) are shown.

1.6.4 Main results

In the following, we will briefly report some of the main results obtained at the Pierre Auger Observatory.
All plots and figures will be referred to such results and measurements, if not specified otherwise.

In 2007 the Pierre Auger Observatory reported a 99% CL correlation between the arrival directions
of detected UHECRs with energy above 55 EeV and AGN within 75 Mpc [88]. The recent observations
(Fig. 1.25) still show a significant amount of correlation, although weaker than the previous claim but
still far from the isotropic expectation (Fig. 1.26) [89]. An apparent excess around the direction of
Centaurus A has been reported as well [89]. If the particles responsible for such an excess above 56 EeV
are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same
regions at energies E/Z. However, the lack of anisotropies in these directions, at such energies, has been
reported [90].

In Fig. 1.27 we show the measurements of the average maximum shower development Xmax (left
panel) and its fluctuation (right panel) as a function of the energy [91]. Lines above and below data
points indicate the expectation from hadronic models in the case of protons and irons: a clear trend
towards a heavy mass composition is found at higher energy. Such results are an update of the recent
measurements reported in Ref. [92]. However, the interpretation of such a result and its compatibility
with other results is rather difficult and it is still under investigation.

In Fig. 1.28 we show the measured energy spectrum above 1018 eV, derived from SD data calibrated
with FD measurements (left panel) and that combined with hybrid data (right panel). The strong
suppression of the flux above 40 EeV is evident, with a statistical significance larger than 20σ [28, 93], in
agreement with the result reported by the HiRes Collaboration [94]. The measurement of a suppression
of the flux at the highest energies is consistent with an extragalactic origin of the UHECRs and with
the expectation from the GZK effect.
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Figure 1.25: Arrival directions, in galactic coordinates, of
UHECRs with energy above 56 EeV (black dots)
and positions of AGN within 75 Mpc in the
Veron-Cetty & Veron catalog. Color codes the
relative nonuniform exposure of the Observatory
[89].

Figure 1.26: The most likely value of the degree of correla-
tion pdata = k/N is plotted with black dots as
a function of the total number of time-ordered
events (excluding those in period I). The 68%,
95% and 99.7% confidence level intervals around
the most likely value are shaded. The horizontal
dashed line shows the isotropic value piso = 0.21
[89].

Figure 1.27: Most up-to-date measurements of 〈Xmax〉 (left panel) and RMS(Xmax) (right panel) as a function of the
energy. Data (points) are shown with the predictions for proton and iron for several hadronic interaction
models. The number of events in each bin is indicated. Systematic uncertainties are indicated as a band [91].

The energy spectrum derived from hybrid data is combined with the one obtained from surface
detector data using a maximum likelihood method. Since the surface detector energy estimator is
calibrated with hybrid events, the two spectra have the same systematic uncertainty in the energy scale
(22%). On the other hand, the normalization uncertainties are independent. They are taken as 6% for
the SD and 10% (6%) for the hybrid flux at 1018 eV (> 1019 eV). These normalization uncertainties are
used as additional constraints in the combination. In the right panel of Fig. 1.28 the resulting combined
energy spectrum is shown [95].

Fig. 1.29 shows the up-to-date measurements of the proton-air cross section compared to other mea-
surements and model predictions [96]. The knowledge of such cross section plays a central role in the
physics of extended air showers and it has a non-negligible impact on current hadronic models.

In Fig. 1.30 we show upper bounds to the flux of (still unobserved) photons, at different energies [97].
Previous bounds [98] and bounds obtained from AGASA and Yakutsk are shown, as well as predictions
from top-down models and GZK photon flux. The current observations of the Pierre Auger Observatory
rule out several exotics model, whereas Z−bursts and GZK models are still compatible with the data.
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Figure 1.28: Up-to-date measurements of the energy spectrum as a function of the energy. Left panel: Energy spectrum
derived from surface detector data calibrated with fluorescence detector measurements. The spectrum has
been corrected for the energy resolution of the detector. Only statistical uncertainties are shown. Upper
limits correspond to 68% CL. Right panel: Combined energy spectrum fitted with two functions (see [95]).
Only statistical uncertainties are shown. The systematic uncertainty in the energy scale is 22%.
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With the SD of the Pierre Auger Observatory, we can also detect ultra-high energy neutrinos in the
sub-EeV energy range and above. Neutrinos of all flavours can interact in the atmosphere and induce
inclined showers close to the ground (down-going). The sensitivity of the SD to tau neutrinos is further
enhanced through the “Earth-skimming” mechanism (up-going). Both types of neutrino interactions can
be identified through the broad time structure of the signals induced in the stations of the SD.

In the left panel of Fig. 1.31 we show the exposure of the SD for Earth-skimming neutrino initiated
showers and for down-going neutrino initiated showers for all the considered channels as a function of
neutrino energy. In the right panel of the same figure, differential and integrated upper limits (90% C.L.)
for a diffuse flux of down-going neutrinos and Earth-skimming ντ are shown, together with expected
fluxes from exotic and GZK models [99].
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To myself I am only a child
playing on the beach, while vast
oceans of truth lie undiscovered
before me.

I. Newton

The wise man looks into space
and does not regard the small as
too little, nor the great as too
big, for he knows that, there is
no limit to dimensions.

Chuang Tzu
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Chapter 2

Simulating the propagation of UHECRs I:

magnetic fields

At the end of the previous chapter, we have discussed the most likely origin of UHECR, although it is still
unknown, by describing candidate sources able to accelerate particles up to the highest energies. Within
the present and the next chapter, separated for simplicity, we will present the Monte Carlo we developed
to simulate of nuclei propagation in the Universe. In this chapter, we will describe the effects of magnetic
fields as included in the propagation code. In the next one, we will instead describe the included relevant
energy-loss processes, due to the interaction of UHECR with photons of the extragalactic background
radiation. Also, by mean of the described Monte Carlo, we will explore the impact of such propagation
effects on physical observables as the energy spectrum, mass composition and arrival directions. In the
following we will refer to such a code as “HERMES”.

In the first section, the general structure of HERMES is presented. Successively, the origin of cos-
mic magnetic fields and their modeling for what concerns our Galaxy and the nearby extragalactic
space, are briefly described. Recent models for the regular component of the galactic field (Stanev,
Harari-Mollerach-Roulet, Tinyakov-Tkachev with ASS or BSS patterns) and, in general, for the turbu-
lent component which can be simulated with HERMES, are discussed. The diffusion in the irregular
(turbulent) magnetic field is briefly treated, together with the theoretical and numerical estimation of
the components of the diffusion tensor. Preliminary checks of consistency between results obtained by
HERMES and those by other codes available in literature are reported.

2.1 General structure of the HERMES code

UHECRs, produced by powerful astrophysical objects, propagate in the Universe experiencing deflections
due to magnetic fields and energy-loss processes due to the interaction with photons of the extragalactic
background radiation (EBR). In Fig. 2.1 we show a simplified sketch of the propagation, whose simulation
will be presented in some detail within this chapter and the next one. In fact, the contribution of many
factors should be taken into account; to cite the most relevant: i) geometry of the (expanding) Universe;
ii) interactions with EBR, responsible for the creation of secondary UHE photons and neutrinos for
any charged nucleus, and, in the particular case of heavy nuclei, secondary nucleons and lighter nuclei
produced because of photo-disintegration processes; iii) regular magnetic fields responsible of bending
particles; iv) irregular ones responsible of randomly scattering them. The simulation of cosmology and
energy-loss will be treated in the next chapter, whereas magnetic fields will be treated in the next
sections.

In this section we outline the preliminary version of HERMES, our Monte Carlo code simulating the
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Figure 2.1: Sketch of nuclei propagation in a magnetized Universe.

propagation of UHECRs. It is composed by different modules, each one performing a specific task. A
sketch of such modules and their interconnections is shown in Fig. 2.2, including:

• MagProp: responsible for i) the parameterization and the simulation of galactic magnetic fields;
ii) the simulation of the irregular (turbulent) component of the extragalactic magnetic field; iii)
the propagation of nuclei in the simulated magnetic fields;

• xHERMES: responsible for i) the parameterization of the EBR; ii) the parameterization of the
cross sections regarding the relevant interactions between charged nuclei and photons of the EBR;
iii) the numerical estimation of the corresponding mean free paths and energy-loss lengths;

• EleCa: responsible for the full propagation of the electromagnetic cascade generated by nuclei
interactions with photons of the EBR.

The kernel of HERMES is responsible for interconnecting the different modules, allowing the simula-
tion of several astrophysical scenarios. The propagation of charged nuclei, as well as secondary photons
and neutrinos produced during their propagation, is included. Any model that will be discussed farther
in the text, regarding the EBR, the magnetic fields or the interactions with EBR, can be easily switched
off or taken into account in the simulation.

It is worth remarking here that such a code will be finalized in collaboration with Dr. O. Deligny
and Dr. H. Lyberis (Institut de Physique Nucléaire d’Orsay), and with Dr. M. Settimo (University of
Siegen), who is developing the component for the propagation of the electromagnetic cascade.
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Figure 2.2: Sketch of the simulation modules which build HERMES.

2.2 Origin of cosmic magnetic fields

The presence of magnetic fields, both in the intergalactic space and in our galaxy, has a non-negligible
impact on the propagation of charged nuclei. It is thus of fundamental importance to investigate the
structure of galactic and extragalactic magnetic field (GMF and EMF, respectively), that have a direct
impact on the energy spectrum, the strength of the anisotropy signal and the correlation with candidate
sources.

Note. It is worth remarking here that the presence of magnetic fields does not introduce a spurious
anisotropy in the arrival directions of UHECR, if such anisotropy is not intrinsic, i.e. if it is not due
to the anisotropic distribution of the candidate sources. In fact, the magnetic field does not change the
magnitude of the cosmic-ray momentum: the phase space is preserved and the flux is constant along
each particle trajectory. Such a behavior is ensured by the Liouville’s theorem. Such statement is true as
long as particles are not lost to a volume element by collision or radiation processes, conditions satisfied
in large part for cosmic-ray ions in the Galaxy spiraling around the interstellar magnetic fields. If there
exists a trajectory for any direction at Earth that can be followed back to the outer sphere of sources,
the flux at Earth has to be the same as it is just outside the Galactic magnetosphere. If the flux is
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isotropic outside the GMF, then it is also isotropic at Earth [100].

In stars and galaxies, and indeed in many other astrophysical settings, the gas is partially or fully
ionized and can carry electric currents that, in turn, produce magnetic fields. The associated Lorentz
force exerted on the ionized gas (also called plasma) can in general no longer be neglected in the
momentum equation for the gas. Magneto-hydrodynamics (MHD) is the study of the interaction of the
magnetic field and the plasma treated as a fluid. In MHD, Maxwell’s equations of electrodynamics are
combined with the fluid equations, including also the Lorentz forces due to electromagnetic fields [101].
The obtained evolution equation describes the variation of the magnetic field ~B with time in a given
point of the space1

∂ ~B

∂t
= ~∇∧

(
~v ∧ ~B − η~∇∧ ~B

)
, (2.1)

where ~v is the velocity of the plasma relative to the magnetic field in some fixed reference frame and
η = c2/(4πσ) is the magnetic diffusivity and σ is the electric conductivity.

One can argue that ~B = 0 is a valid solution of the evolution equation, with the direct consequence
that no magnetic field would be generated if one were to start with zero magnetic field, the most quite
plausible assumption on the initial condition of the early Universe. In order to drive currents from a
state with initially no current, we need some way of violating the induction equation to produce a cosmic
battery effect, as the Biermann battery [102] or other mechanisms [103–106], to cite some of them.

The solution of Eq. (2.1) is able to describe, for instance, the magnetic field inside a galaxy. If the
field is not allowed to undergo stochastic fluctuations, the resulting magnetic field provides the regular
component. Conversely, if Eq. (2.1) is adopted to describe the evolution of the initial fluctuations, the
resulting magnetic field provides the irregular component (generally referred to as turbulent). Recently,
it has been proposed a scenario in which turbulent flow motions are induced via the cascade of the
vorticity generated at cosmological shocks during the formation of the large scale structure. Simulations
have shown that the turbulence inside clusters and groups of galaxies is subsonic, whereas it is transonic
or mildly supersonic in filaments. By mean of a turbulence dynamo model, the average magnetic field
strength has been estimated to be of the order of few µG inside clusters/groups, approximately 0.1
µG around clusters/groups, and approximately 10 nG in filaments. Moreover, such model presents a
physical mechanism that transfers the gravitation energy to the turbulence and magnetic field energies
in the large scale structure of the Universe [107].

2.3 Simulating the motion of charged particles

In order to simulate the diffusion of charged particles in magnetic fields, we adopt in HERMES a standard
approach, based on the numerical integration of the equation of motions obtained in the ultra-relativistic
approximation, in the case of nuclei.

In general, the motion of a particle with charge q = Ze in an electromagnetic field defined by the
field strength tensor Fµν is described by

∂0p
µ = qvνF

µν , (2.2)

being the contravariant counterpart of the classical Lorentz equation. Here, pµ represents the particle
4-momentum, vν indicates its 4-velocity and the derivative should be intended with respect to the proper

1The formal derivation of the induction equation is not within the scope of the present work: we refer to [101] and
Refs. therein for a detailed discussion of this point.
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time. If the electric field is absent (or negligible) and we assume the case of a particle in ultra-relativistic
regime, i.e. the particle travels at the speed of light in the direction v̂(t) at time t subjected to a magnetic
field ~B(~r) along the trajectory ~r(t), the Lorentz equation reduces to the set of six ordinary differential
equations defined by

d~r(t)

dt
= cv̂(t)

dv̂(t)

dt
=

qc2

E
v̂(t) ∧ ~B(~r). (2.3)

In practice, charged particles accelerating in a magnetic field lose energy because of the emission of
synchrotron radiation: in the case of light particles as electrons or positrons, such energy loss should be
taken into account during the propagation, whereas for heavier particles as protons it is negligible.

The helical path of a charged particles propagating in an uniform regular magnetic field ~B0 is
characterized by a pitch angle θ and a Larmor radius

rL =
pc

ZeB0
≃ E/Z

1018 eV

(
µG
B0

)
kpc, (2.4)

The radius of the helical trajectory is rL sin θ, whereas v‖ = c cos θ is the component of the velocity
parallel to ~B0.

2.4 Modeling the diffusion in the irregular field

For the simulation of the irregular component of the magnetic field, we adopt in HERMES the approach
proposed by Giacalone and Jokipii, based on a local step-by-step simulation of the turbulent field.

Although some techniques have been developed to detect magnetic fields in cosmic objects, our
knowledge of such fields is still poor. The magnetic field component B⊥ perpendicular to the line of
sight can be measured from the polarization of optical, infrared and radio synchrotron emission [108],
whereas the parallel component B‖ can be obtained from the Faraday effect. The synchrotron process
is responsible of creating linearly polarized radio waves whose polarization planes are rotated when such
waves experience a uniform magnetic field. From the measurements of such rotations (so-called RM),
being clockwise if the magnetic field points away from the observer and counterclockwise otherwise, it
is possible to estimate B‖. Other techniques exploit the Zeeman effect, i.e. the splitting of spectral lines
into some distinct components because of the degeneracy breaking of quantum states of electrons in
atoms. Zeeman splitting and Faraday rotation measurements provide information about the magnetic
field component along the line of sight and its sign, whereas synchrotron radiation and polarimetry (of
starlight dust) are limited to the component perpendicular to the line of sight.

Magnetic fields in galaxies are mainly probed using radio observations of their synchrotron emission.
It has been shown that the mean equipartition strength of the total magnetic field for a sample of 74
spiral galaxies is 〈Btot〉 ≈ 9 µG [109], with the total field strength ranging from ≈ 4 µG, in radio faint
galaxies like M31 and M33, to ≈ 15 µG, in grand design spiral galaxies like M51, M83 and NGC 6946
[110].

Unfortunately, we have no exact knowledge of both galactic and extragalactic magnetic fields and, as
a consequence, the investigation of charged particles propagation through our galaxy and intergalactic
space, respectively, should be based on empirical (or theoretical) models and numerical simulations.

While the trajectory of a charged particle along the regular field is deterministic, i.e. for a given
initial condition only one solution to the equations of motion exists, the trajectory of a particle through
the turbulent field is stochastic, thus not unique, and it depends on the features of the irregular field as
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its r.m.s. strength and its coherence length. The irregular motion in d dimension can be macroscopically
described in terms of the particle density ̺(~r, t) by the standard diffusion equation

∂̺

∂t
=

d∑

i,j=1

Dij
∂2̺

∂xi∂xj
, (2.5)

where the components of the diffusion tensor D are the transport coefficients that have to be calculated
from the microscopic dynamics.

As any other tensor, the diffusion tensor can be decomposed into a symmetric and an antisymmetric
component. In particular, if ~b = ~B0/B0 is a unit vector along the regular magnetic field, we have

Dij =
(
D‖ −D⊥

)
bibj +D⊥δij +DAǫijkbk, (2.6)

where δij is the Kronecker delta symbol, and ǫijk is the Levi-Civita fully antisymmetric tensor. The
symmetric terms contain the diffusion coefficients parallel and perpendicular to the mean field, D‖
and D⊥, which describe diffusion due to small-scale turbulence, while the antisymmetric term contains
the Hall diffusion coefficient DA describing the macroscopic drift associated to the gradient of the CR
density.

In the following we will discuss our modeling of turbulent component of the magnetic field and
the numerical estimation of the diffusion coefficients as a function of the turbulence level, providing
important information about the propagation of cosmic rays of all energies in a variety of astrophysical
environments, as well as the efficiency of Fermi acceleration processes.

Modeling of the turbulent field. The randomness of the irregular component of the magnetic
field is probably due to the evolution of stochastic fluctuations which are correlated up to a given
correlation scale. In fact, such an irregular component should show the features typical of correlated
flows undergoing turbulent evolution, characterized by a minimum and a maximum scale of turbulence,
ℓmin and ℓmax, respectively. The particles scatter off the magnetic irregularities and change their pitch
angle θ, but not their velocity. The pitch angle scattering is principally dominated by the inhomogeneities
with scales of the order of the Larmor radius, i.e. by resonance, providing an effective mechanism of
isotropization as long as rL < ℓmax.

Our simulation of such an irregular behavior is based on the following approach. The turbulent
magnetic field ~B(~r) satisfies two main requirements: i) it is a zero-mean field 〈 ~B(~r)〉 = 0 with ii)
non-vanishing fluctuations 〈 ~B2(~r)〉 = Brms > 0. Let ~k be the wave vectors with modulus k, power
spectrum P(k) ∝ k−5/3 and amplitudes ~B(~k) of its Fourier modes following the Kolmogorov spectrum
| ~B(~k)|2 ∝ k−11/3: such a field defines a turbulent Kolmogorov 3D magnetic field2. In the Fourier space
the wave vectors satisfy 2π

ℓmax
≤ k ≤ 2π

ℓmin
, where the correlation length of the field is equal to [111]

Λc =
1

2
ℓmax

γ − 1

γ

1− (ℓmin/ℓmax)
γ

1− (ℓmin/ℓmax)γ−1
, (2.7)

where γ is the spectral index of the Kolmogorov spectrum. Such a turbulent field can be simulated
by mean of two different approaches. The first approach, proposed by Giacalone and Jokipii [112, 113]
considers the field as the sum of Nm modes, physically corresponding to the superposition of a finite
number of plane waves:

~B(~r) =

Nm∑

n=1

Anε̂ne
i~kn·~r+iβn , (2.8)

2The spectral index is 8/3 and 5/3 for 2D and 1D magnetic fields, respectively.
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where ε̂n = cosαnx̂n + i sinαnŷn and the amplitude An of the n−th plane wave is given by

A2
n = AB2

irrG(
~k), (2.9)

with

G(~k) =
∆Vn

1 + (kΛc)γ
, ∆Vn = 4πk2∆k, A =

(
Nm∑

n=1

G(~kn)

)−1

. (2.10)

In this last equation, the index γ is equal to 11/3, 8/3 and 5/3 for 3D, 2D and 1D turbulent magnetic
fields, respectively. The direction of the n−th wave vector k̂n is randomly chosen: the unit vectors
x̂n and ŷn are chosen in order to form an orthogonal basis with k̂n and the real numbers αn and βn
represent random polarizations and phases, respectively. For practical applications, the spacing ∆k
between kmin = 2π

ℓmax
and kmax = 2π

ℓmin
should be constant in logarithmic scale and the number of modes

Nm should be large enough to obtain the expected results in the small-angle regime. The main advantage
of such an approach is the definition of the turbulent field at any point in space with arbitrary precision
at the price of a much slower computation than other methods.

The second method, due to Casse, Lemoine and Pelletier [114], makes an extensive use of fast Fourier
transforms (FFT) and it is briefly described here for the sake of completeness. The field is precomputed
on a three dimensional lattice in the real space and the coordinates of its wave vectors correspond to
the positions of vertices on the reciprocal grid in the Fourier space. The resulting field is therefore
computed with FFT and can be interpolated at any point of the space. A lattice of 28 vertices per
side is sufficient for applications [114, 115] and it can be periodically repeated in real space to cover
regions of the order of hundred of Mpc. The main advantage of this method is the quick computation
of the magnetic field, although it suffers of i) limitation in the allowed dynamic range, ii) interpolation
of the magnetic field on scales smaller than the cell size and iii) the periodicity on the scale ℓmax. Such
limitations imply that the results of the FFT method obtained for Larmor radii much smaller than the
cell size, i.e. rL << 1/Ncell, or much bigger than the periodicity scale, rL >> 1, cannot be trusted,
since these regimes are likely to be dominated by systematic effects related to the discreteness or to the
periodicity [114].

Where not otherwise specified, in the following we will make use of the isotropic model, although
the simulation of the composite model is also allowed by our code. Moreover, we will consider a total
magnetic field ~B = ~Btot = ~Breg + ~Birr and, following Ref. [114], we define the turbulence level by

η =
〈 ~B2〉

B2
reg + 〈 ~B2〉

. (2.11)

Such a quantity is useful to investigate the diffusion properties of particles in magnetic fields and it is
strictly related to the values of the diffusion coefficients, as we will see further in this section.

Note. Giacalone and Jokipii have introduced two models for the turbulent magnetic field, namely
isotropic and composite. In the isotropic model, random polarizations αn and phases βn are chosen in the
interval [0, 2π]. Conversely, in the composite model, representing the superposition of a slab component
associated with Alfvén waves and a two-dimensional component generally known as “structures”, the
field is given by ~Birr(x, y, z) = ~B1D

irr (z)+
~B2D

irr (x, y), where γ = 5/3 and ∆Vn = ∆k for the 1D component,
and αn = π/2 is kept fixed, ∆Vn = 2πk∆k and γ = 8/3 for the 2D component.
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Figure 2.3: 2D slices of three random realizations of a Kolmogorov 3D turbulent magnetic field, for three different values
of the scaling index, namely γ = 5/3, γ = 8/3 and γ = 11/3. We have simulated the turbulent field according
to the Giacalone-Jokipii 3D isotropic approach.

In Fig. 2.3 we show the HERMES simulation of a random 3D realization of such a turbulent field for
three different values of the spectral index in the Kolmogorov spectrum, namely γ = 5/3, γ = 8/3 and
γ = 11/3. The formation of large-scale structures is evident for increasing values of γ.

As a consistency check between the goodness of our simulations and those reported in literature, we
have followed the trajectories of several thousands of particles with different magnetic rigidity ρ = rLkmin

and we have recorded the evolution of their pitch angles with time. Let µ(t) be the cosine of the pitch
angle θ(t), i.e. the direction of the velocity with respect to the mean field, and let us investigate the
properties of µ(t). The most simple correlation study can be performed by mean of the autocorrelation
function

C(τ) ≡ 〈µ(t+ τ)µ(t)〉
〈µ2(t)〉 . (2.12)

The average depends on the assumptions about the motion: in chaos theory, it is performed over the
phase space subset of chaotic motions, whereas by assuming ergodicity, it corresponds to the temporal
average. In Fig. 2.4 we show such an autocorrelation function for different values of the rigidity, ranging
from 0.01 to 1 (color coding in each panel), and different turbulence levels, namely 0.1 (left panel) and 0.5
(right panel). When C(τ) approaches zero, the underlying dynamics is defined to be uncorrelated3 and
the value τc such that C(τc) = 0 is defined as decorrelation time. It is evident that the decorrelation time
increases for decreasing rigidity and decreases for increasing turbulence level, as intuitively expected.
Moreover, for time larger than the decorrelation time, the autocorrelation is zero and the dynamics is
stationary and totally uncorrelated, i.e. equivalent to the motion in a Gaussian field. Such results are
in agreement with those reported, for instance, in Ref. [114]. If we define the scattering time

τs ≡
∫ ∞

0
C(τ)dτ, (2.13)

it can be shown that D‖ =
1
3vτ

2
s and D⊥ = D‖/

(
1 + (ωLτs)

2
)
, being ωL the Larmor frequency [114].

3This is true only if the dynamical system generating the time series is linear, otherwise the autocorrelation analysis
may give rise to spurious results. A more general approach to the study of correlations, valid also for nonlinear time series,
is the estimation of the average mutual information [116].

44



Figure 2.4: Consistency check of the HERMES simulation code. The autocorrelation function of the pitch angle cosine
is shown as a function of time τ (in units of Larmor time tL = rL/c) for increasing values of the rigidity
ρ = rLkmin and two different values of the turbulence level, η = 0.1 (left panel) and η = 0.5 (right panel).
Results are in agreement with those reported, for instance, in Ref. [114].

Estimation of diffusion coefficients. By starting from the diffusion equation, the Green-Kubo
formalism allows an analytical estimation of the coefficients Dij [117]. This formalism enables us to
express transport coefficients in terms of time integrals of the velocity autocorrelation functions Rij(t) =
〈vi(0)vj(t)〉, where 〈...〉 denotes the ensemble average taken over an isotropic distribution of many
particles:

Dij =

∫ ∞

0
Rij(t)dt. (2.14)

Let us assume that the decorrelations of velocity are modulated by exponential factors [118, 119]

Rxx(t) = Ryy(t) =
c2

3
cos(ωLt)e

−t/τ⊥ (2.15)

Ryx(t) = −Rxy(t) =
c2

3
sin(ωLt)e

−t/τA (2.16)

Rzz(t) =
c2

3
e−t/τ‖ , (2.17)

where ωL = c/rL is the Larmor frequency and τ⊥, τ‖ and τA are the decorrelation timescales correspond-
ing to the different diffusion components. The resulting diffusion coefficients read

D⊥ =
crL
3

ωLτ⊥
1 + (ωLτ⊥)2

(2.18)

D‖ =
crL
3
ωLτ‖ (2.19)

DA =
crL
3

ωLτA
1 + (ωLτA)2

. (2.20)

However, although such an approach is very elegant, i) there is no general theory providing the
decorrelation timescales, and ii) the implicit assumption of such calculations is the small departure from
the helical trajectories, which is no longer adequate for high turbulence levels [119]. A valid alternative
is to estimate D⊥ and D‖ by means of numerical simulations, estimating the asymptotic rate of increase
of the mean squared displacements in each direction, namely

D‖ = lim
∆t−→∞

〈(∆z)2〉
2∆t

, D⊥ = lim
∆t−→∞

〈(∆x)2〉
2∆t

= lim
∆t−→∞

〈(∆y)2〉
2∆t

.

In Fig. 2.5 two important results obtained in Ref. [114] are shown. In the left panel, the ratio D⊥/D‖
is shown as a function of rigidity, for different values of the turbulence level η, putting in evidence
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Figure 2.5: Left: The square root of D⊥/D‖ as a function of rigidity, for different values of the turbulence level η [114].
Symbols indicate the values obtained from MC simulations, vertical dashed lines indicate the range of validity
of FFT approach and the dotted curves correspond to the classical scattering results, the latter diverging
significantly from numerical results. Right: The square of the separation distance between two field lines as a
function of the curvilinear abscissa s along the field line. The exponential divergence followed by the diffusion
regime is clearly identified. The transition between these two regimes occurs when s is of the order of ℓmax .

the disagreement between the numerical simulations and expected classical result, as well as the strong
dependence on the value of η. In the right panel is shown the average displacement 〈∆r2〉 of two field
lines as a function of the curvilinear abscissa s: the transition from a chaotic dynamics, clearly identified
by the exponential divergence of 〈∆r2〉 characterized by a Lyapunov exponent lK , to the diffusive regime,
identified by the scaling 〈∆r2〉 ∝ ∆s.

From the scaling analysis of the diffusion coefficients and the Lyapunov exponents with the turbulence
level, it has been conjectured that the relation

D⊥ = η2.3±0.2D‖ (2.21)

holds for almost one order of magnitude over η, [114]. For the classical estimation of the ratio D⊥/D‖,
or other parameterizations as a function of the turbulence level or the r.m.s. strength of the turbulent
field, we refer to Refs. [113, 119] and Refs. therein. The impact of such results on the Fermi acceleration
mechanisms in the case of galactic supernovae remnants, superbubbles and jets in extragalactic sources
is described in detail in Ref. [114].

2.5 Simulating the Galactic magnetic field

In the following, we will present the models included in HERMES for the simulation of nuclei propagation
in our Galaxy.

In spiral galaxies, the turbulent component of the magnetic field is almost always strongest within
the spiral arms and thus follows the distribution of cool gas and dust, whereas the regular component is
generally weak within spiral arms, except for rare cases like M51 with strong density waves. However,
the regular field also extends far into the inter-arm regions. The regular field in M31 is nearly aligned
with the spiral arms forming the bright “ring” of emission seen in this galaxy [101]. The total field is
expected to be more intense within the spiral arms where the random field dominates.

Observations suggest that the large-scale spiral field produce an halo, extending outside the galactic
disks. In cylindrical coordinates, the distribution of the magnetic field B(ρ, φ, z) in the galaxy can
be described by the product of three separated components, related to pure radial dependence R(ρ),
spiral “winding” modulation S(ρ, φ), and halo extinction H(z), respectively. Several models have been
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proposed to describe the regular component of the magnetic field in our galaxy. In the following we will
briefly describe the most common ones, which are also the models included in HERMES.

The structure of the magnetic field obtained by dynamo mechanisms can be described by modes
of different azimuthal symmetry in the disk, and vertical symmetry perpendicular to the disk plane:
bisymmetric (BSS) or axisymmetric (ASS), depending on π or 2π symmetry, respectively. Along the
vertical dimension, the field can change direction while traversing the disk plane (odd or A-parity) or
keep it fixed (even or S-parity). Thus, the possible patterns of the spiral field are four, and we will
indicate them with the notation BSS-S, BSS-A, ASS-S and ASS-A.

Let us assume a Cartesian space centered at the Galactic Center (GC) of coordinates (0,0,0), and
let (−Rsun, 0, 0) the position of the sun, with Rsun = 8.5 kpc. The cylindrical coordinates are (ρ, φ, z) ≡
(
√
x2 + y2, tan y/x, z). Below, we will briefly describe4 some common galactic magnetic field models

proposed by Stanev [121], Harari, Mollerach and Roulet (HMR) [122], and Tinyakov and Tkachev [123].
For the sake of completeness, we refer to Refs. [124–128] for other models describing the galactic
magnetic field.

Stanev model

From the investigation of the current data available in the early 1990s, Stanev proposed the following
functions to model the field:

• Radial dependence:

R(ρ) =

{
B0

Rsun

ρ ρ > ρ0
B0

Rsun

ρ0
ρ ≤ ρ0

, (2.22)

where B0 = 3 µG and ρ0 = 4 kpc. The magnetic field is 6.4 µG in the central region of the Galaxy
(at ρ < 4 kpc), and decreases like 1/ρ at larger ρ values.

• Spiral modulation:

SBSS(ρ, φ) = cos

(
φ− β ln

ρ

ρ1
− φsun

)
, (2.23)

SASS(ρ, φ) =

∣∣∣∣cos
(
φ− β ln

ρ

ρ1
− φsun

)∣∣∣∣ , (2.24)

where β = 1/ tan p, being p the pitch angle. The parameters have been chosen according to
observations, with p = −170◦, φsun = π and ρ1 = 10.55 kpc, the latter related to the distance to
the two possible close reversals (in the BSS model) or locations of the field zeroing (in the ASS
model), which occur in the Galactic Center direction at 0.5 kpc and ∼3 kpc.

• Halo extinction:

HS(z) =





exp
(
− |z|

z1

)
|z| < z0

exp
(
− |z|

z2
+ z0

z2
− z0

z1

)
|z| ≥ z0

, (2.25)

HA±(z) = ±sign(z)HS(z), (2.26)

for the even and odd parity, respectively, where z0 = 0.5 kpc, z1 = 1 kpc and z2 = 4 kpc.

4We would like to remark that such a description is inspired by the nice review written by Serguei Vorobiov, Mustafa
Hussain and Darko Veberic [120].
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HMR model

The model proposed by Harari, Mollerach and Roulet (HMR), is a modification of the model proposed
by Stanev, smoothed out in order to avoid the discontinuities of the field and its derivatives:

• Radial dependence:

R(ρ) = B0
Rsun

ρ
tanh3

ρ

ρ2
, (2.27)

where B0 = 3 µG, ρ2 = 2 kpc and R(ρ) goes smoothly to zero at the Galactic Center.

• Spiral modulation:

SASS(ρ, φ) = cos2
(
φ− β ln

ρ

ρ1
− φsun

)
, (2.28)

where ρ1 = 10.55 kpc.

• Halo extinction:

HS(z) =
1

2

(
1

cosh(z/z1)
+

1

cosh(z/z2)

)
, (2.29)

HA±(z) = HS(z) tanh(z/z3), (2.30)

for the even and odd parity, respectively, where z1 = 0.3 kpc, z2 = 4 kpc and z3 = 20 pc.

Tinyakov and Tkachev model

In their model, Tinyakov and Tkachev have considered only the spiral disk component with bisymmetric
field and different parity with respect to the z−axis. Moreover, they have provided a new expression for
the in-plane field R(ρ)S(ρ, φ) in terms of parameters related to the local field, including an additional
parameter related to the distance d to the nearest field reversal (being negative if it occurs in the
direction of the Galactic Center, being positive otherwise):

• Radial dependence:

R(ρ) = B0
Rsun

ρ cosφadd

, (2.31)

where B0 = 1.4 µG and d = −0.5 kpc and φadd = β ln (1 + d/Rsun)− π/2.

• Spiral modulation:

SBSS(ρ, φ) = cos

(
φ− β ln

ρ

Rsun
+ φadd − φsun

)
. (2.32)

• Halo extinction:

HS(z) = exp (−|z|/z1) , (2.33)

HA±(z) = ±signHS(z), (2.34)

for the even and odd parity, respectively, where z1 = 1.5 kpc.
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Figure 2.6: Left: HERMES simulation of the HMR model for the regular component of the magnetic field in our galaxy
(at z = 0), where the color indicates the intensity of the field. Right: Two-dimensional projection of the
corresponding backtracked trajectories of UHECR for different values of the rigidity E/Z, ranging from 1017 eV
(0.1 EeV) to 1020 eV (100 EeV)

In the left panel Fig. 2.6 we show the HERMES simulation of the HMR model for the regular
component of the magnetic field in our galaxy (at z = 0). In the right panel of the same figure, the two-
dimensional projection of the corresponding backtracked trajectories of UHECR are shown for different
values of the rigidity E/Z, ranging from 1017 eV (0.1 EeV) to 1020 eV (100 EeV). It is evident that
at the lower energy particles tend to move along helical trajectories around the field lines, whereas for
increasing energy particle tend to be less deflected.

Note. In the forward tracking approach, a particle with charge Z is propagated forward in time
and its trajectory is followed. However, if we are interested in investigating the original direction of the
particle, i.e. the direction that the particle had at the beginning of its travel from the source to the
Earth, we should have to follow the path of the particle back in time. A backtracked trajectory is the
path traveled by the antiparticle, and it is obtained by substituting the charge Z with the charge −Z
in the equations of motion.

By mean of the backtracking technique, it is possible to build the maps of the average deflections
experienced by UHECR by estimating the angular distance between the original direction of the particle
and the direction observed at Earth. In Fig. 2.7 we show the result of such a procedure for HMR (left)
and Tinyakov-Tkachev (right) models obtained by recent simulations [125]. It is evident that deflections
are strongly model-dependent and that different regions of the sky behave differently, making more
difficult the source detection for events with energy smaller than 1020 eV.

For what concerns the irregular component of the GMF, as previously discussed, observations suggest
a r.m.s. intensity of the order of the regular one, although no precise information is currently available.
In Fig. 2.8 we show the HERMES simulation of the trajectory (forward in time) of a particle with E/Z
ranging from 1017 eV to 1020 eV (left, middle and right panel, respectively), propagating in a magnetic
field with an uniform component of intensity B0 = 3 µG, parallel to the z−axis and a 3D turbulent
component, characterized by maximum coherence length ℓmax = 100 pc, r.m.s. strength 〈B2

irr〉 = 1 µG
and Kolmogorov index γ = 11/3. The turbulence level is η = 0.1. At the lowest energy the particle
undergoes a brownian motion, being the Larmor radius of the order of turbulence scale ℓmax, whereas
for increasing energy the particle only partially “feels” the turbulent component. At the highest energy
the particle is subjected to the regular component only.

In Fig. 2.9 we show some realizations of backtracked trajectories of nuclei with random direction in the
GMF, including both regular (HMR BSS-S) and irregular (Kolmogorov 3D) components, obtained from
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Figure 2.7: Deflection maps for HMR (left panel) and Tinyakov-Tkachev (right panel) models of the GMF, for a rigidity
of 4 × 1019 V. The deflection scale is in degree, and the maps refer to the direction as observed at the Earth
[125].

our simulations. Nuclei have been backtracked from the Earth (black diamond) up to a galactocentric
distance of 20 kpc. Results for three different values of the rigidity E/Z (1018 eV, 1019 eV and 1020 eV)
and two different values of the r.m.s. strength of the irregular magnetic field (1 µG and 6 µG, the latter of
the order of the regular component) are shown. At the lowest energy, particles suffers of many turbulent
deflections, whereas at the highest energy both fields have almost no impact on the trajectories. At
E = 1019 eV the irregular field has a small impact on the trajectories for 〈B2

irr〉 = 1 µG but a non-
negligible impact for 〈B2

irr〉 = 6 µG, where the reconstruction of the original direction is impossible, in
practice. For the application of such a procedure to real events observed by AGASA (as well as by other
experiments as Haverah Park, Volcano Ranch and Yakutsk) we refer to Refs. [123–125, 129].

The deflection δreg due to the regular component of the magnetic field can be parametrized [130] by

δreg ≃ 3.2◦
1020 eV
E/Z

D

3 kpc
Breg

2 µG
, (2.35)

where D is the distance traversed by the particle across the field. The deflection δirr due to the irregular
component of the magnetic field can be estimated by assuming that the particle undergoes a brownian
motion at the scale of the coherence length Λ of the field and that the ratio D/Λ provides an estimation
of the number of magnetic regions traversed [115, 130]:

δirr =
1√
2

ZeBrms

E
(DΛ)

1
2 ≃ 0.6◦

1020 eV
E/Z

Brms

4 µG

(
D

3 kpc

) 1
2
(

Λ

50 pc

) 1
2

, (2.36)

being Brms = 〈B2
irr〉.

2.6 Simulating the extragalactic magnetic field

The current knowledge of the extragalactic magnetic field is even lower than for the galactic case. The
use of extensive numerical simulations, based on MHD evolution of the magnetic field, represents a
fundamental tool for the comparison with observations. It is generally assumed that EMF is coherent
for scales above few Mpc, and it is turbulent for scales below this limit, with a distribution following
that of matter.

We simulate the propagation of charged nuclei in the turbulent component of the EMF with the
same approach adopted in the case of the random component of the GMF, by considering, of course,
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Figure 2.8: A random realization of nuclei trajectories in a uniform magnetic field (B0 = 3 µG, parallel to the z−axis)
plus a Kolmogorov 3D turbulent field (γ = 11/3), for three different values of the ratio E/Z, namely 1017 eV,
1018.5 eV and 1020 eV. We have simulated the turbulent field (ℓmax = 100 pc, 〈B2

irr〉 = 1 µG, η = 0.1) according
to the Giacalone-Jokipii 3D isotropic approach.

Figure 2.9: Backtracked trajectories (color coded) of nuclei in the GMF, obtained with HERMES, including both regular
(HMR BSS-S) and random realizations of the irregular (Kolmogorov 3D) components. Nuclei have been
backtracked from the Earth (black diamond) up to a galactocentric distance of 20 kpc. Results for three
different values of the rigidity E/Z (1018 eV, 1019 eV and 1020 eV) and two different values of the r.m.s.
strength of the irregular magnetic field (1 µG and 6 µG) are shown.

that different scales are involved. The deflection δirr due to the irregular component of the EMF can
be estimated similarly to the case of the GMF, by considering the appropriate coherence length and by
neglecting energy loss processes [40]:

δirr =≃ 0.8◦
1020 eV
E/Z

Brms

1 nG

(
D

10 Mpc

) 1
2
(

Λ

1 Mpc

) 1
2

. (2.37)
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Figure 2.10: HERMES simulations for the diffusion of charged nuclei in the EMF (energy loss processes have been switched
off). Left: Small region of the two-dimensional projection of a 3D turbulent magnetic field characterized
by a coherence length Λ = 1 Mpc, γ = 11/3, Brms = 0.1 nG (top) and Brms = 1 nG (bottom); the
random realization is the same in both cases. Middle: Trajectories of a particle with E/Z = 1018 eV for
Brms = 0.1 nG (top) and Brms = 1 nG (bottom). Right: Trajectories of a particle with E/Z = 1019 eV for
Brms = 0.1 nG (top) and Brms = 1 nG (bottom).

In Fig. 2.10 we show two-dimensional projections for random realizations of the trajectory of a
charged particle starting from the center (0, 0, 0) of the reference frame, for different values of the r.m.s.
strength Brms = 〈B2

irr〉 of the magnetic field (coherence length Λ = 1 Mpc) and different rigidities,
obtained from our simulations. For E/Z = 1018 eV and Brms = 0.1 nG, the particle traverses distances
of the order of tens Mpc before experiencing significant deflections, whereas for E/Z = 1019 eV the
propagation is rectilinear, in practice. For increasing values of Brms, for instance of an order of magni-
tude, an energy of E/Z = 1019 eV is no more sufficient to ensure a rectilinear propagation over hundreds
Mpc.

Results discussed so far have been obtained by neglecting the energy loss processes involved during
the propagation in the turbulent magnetic field. However, such an approximation introduces an under-
estimation of the instantaneous diffusion coefficients, as shown in Fig. 2.11 [131]. In the left panel, the
propagation of protons in a turbulent field characterized by Brms = 10 nG and Λ = 1 Mpc is considered,
and the instantaneous diffusion coefficients are estimated as a function of elapsed time, for several values
of the energy, ranging 1016 to 1020 eV: here energy loss have been switched off. In the top-right panel of
the same figure, the same results are shown after switching on the energy loss processes: the difference
with the previous case is evident, because, in this second case, protons may not survive long enough
to enter the diffusion regime. In the bottom-right panel of the same figure, the diffusion coefficient is
shown as a function of energy, under the same physical assumptions about the propagation: it is evident
a transition between two asymptotic behaviors, E1/3 and E2, for increasing energy scale. It is worth
remarking that the resulting diffusion coefficients are not in agreement with Bohm’s theory, describing
the diffusion of plasma across a magnetic field.
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Figure 2.11: Left: Instantaneous effective diffusion coefficient, ∆r2/(6∆t), as a function of elapsed time, for protons of
various energies, from 1016 to 1020 eV. The turbulent magnetic field is characterized by Brms = 10 nG and
Λ = 1 Mpc. Energy losses have been switched off [131]. Top-right: Same of left panel, but with energy
losses switched on. Bottom-right: Diffusion coefficient of protons as a function of energy, for the same
turbulent magnetic field. The red dots are the computation results, with asymptotic behaviors indicated by
the thin dashed lines. The Bohm diffusion coefficient is also shown for comparison (dashed line) [131].

Impact on the spectrum of UHECR. In this small section we will briefly discuss the impact
of EMF on the flux of UHECR measured at Earth. Recently, Berezinsky and Gazizov presented an
analytic solution to diffusion equation for high energy cosmic rays in the expanding Universe [132],
generalizing the Syrovatsky solution [133], valid for the case when energy losses and diffusion coefficient
are time-independent.

In another recent paper, they have shown that the flux of UHECR at Earth at the lowest and at the
highest energy depends on the assumptions about the magnetic field [134]. In particular, by assuming an
evolution of the magnetic field, with the intensity of the field decreasing with time because of magnetic
flux conservation, they have shown that some differences are present if a static of an expanding Universe
is considered5.

In Fig. 2.12 the energy spectra of extragalactic UHECR propagated to the Earth are shown, by
varying the spectral index at the source, the density of sources and their evolution, the composition
and the EMF as reported by [131]. In agreement with the result of Berezinsky and Gazizov, the overall
effect of the EMF is to reduce the flux of UHECR at the lowest (below 1018 eV) and at the highest
energy (above 1019.8 eV). For further details, we refer to the original papers.

5It is worth noticing that in the expanding Universe the source term in the diffusion equation, as well as the density
of particles, depend explicitly on time because they are related to the comoving volume.
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Figure 2.12: Spectra of extragalactic UHECR propagated to the Earth, compared with the flux measured by the Hires
Collaboration. Top-left: Pure proton sources with injection spectrum E−2.6 and source density 10−5 Mpc−3.
Top-right: Mixed source composition with injection spectrum E−2.4, and EMF defined by Brms = 1 nG and
Λ = 1 Mpc; two different source density, namely 10−5 Mpc−3 and 10−3 Mpc−3, are considered. Bottom-left:

Mixed source composition, source density 10−5 Mpc−3 and different r.m.s strength of EMF (injection index
corresponding to a configuration of EMF is varied in order to better fit the data). Bottom-right: Mixed
source composition, source density 10−5 Mpc−3, Brms = 1 nG and different values of the injection index and
source power evolution. For further details we refer to the original paper [131].

2.7 Conclusions

In this chapter we have introduced the Monte Carlo code (HERMES) that we have originally developed
to simulate the propagation of nuclei in the Universe. We have shown the different modules composing
HERMES and we have briefly presented their role in the framework.

Successively, we have discussed how HERMES simulates magnetic fields. In particular, we have
treated the simulation of: i) the regular component of the Galactic magnetic field, showing the models
included in our code (Stanev, Harari-Mollerach-Roulet, Tinyakov-Tkachev with ASS or BSS patterns);
ii) the irregular component of both the Galactic and the extragalactic magnetic fields by using the
Giacalone-Jokipii approach. Several simulations of nuclei propagating in a magnetized Universe and in
our Galaxy have been provided, by varying the relevant parameters.

We have shown the impact of magnetic fields on the propagation of UHE nuclei, without considering
the energy-loss processes relevant for a complete study. This is the main topic of the next chapter.

54



Imagination is more important
than knowledge. Knowledge is
limited. Imagination encircles
the world.

A. Einstein

A frog in a well cannot conceive
of the ocean.

Chuang Tzu
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Chapter 3

Simulating the propagation of UHECRs II:

energy-loss in the EBR

In the previous chapter, the general structure of HERMES, our Monte Carlo code for simulating the
propagation of nuclei in a magnetized Universe, has been presented. In particular, we have discussed
how HERMES simulates magnetic fields and the diffusion of UHE particles in the absence of energy-loss.

Within the present chapter, which should be considered complementary to the previous one, we will
show the impact of energy-loss processes on the propagation of UHE nuclei, photons and neutrinos.
First, we describe the cosmological framework chosen for HERMES and the parameterizations we have
adopted for the extragalactic background radiations relevant to our study, namely the cosmic microwave,
infrared/optical and radio backgrounds. Successively, we will define the parameterizations we have
chosen for the cross sections of the interactions between propagating UHECRs and photons of the
background radiation. We will discuss all the relevant energy-loss processes included in our simulator
as the adiabatic loss (due to the expansion of the Universe), the pair and photo-pion production, and,
in the particular case of heavy nuclei, the photo-disintegration processes.

The creation of secondary particles, produced by UHE nuclei undergoing pair and photo-pion produc-
tion during their propagation, is also described. Complementary information can be found in Appendix
A, where the relativistic kinematics of collisions and decays is treated with some detail. The develop-
ment of the resulting UHECR cascade, including neutrinos and photons, will be briefly described to
underline the complexity of simulating a realistic propagation. The comparison between HERMES and
other codes available in the UHECR community will be performed and discussed.

Finally, we will conclude the chapter by presenting our result about the impact of cosmology and
magnetic fields on the GZK horizon of UHE protons.

3.1 Modeling the cosmological framework

Motivated by up-to-date observations, we have chosen a general Friedmann’s Universe, defined by a
Friedmann-Robertson-Walker metric, to be the cosmological framework in HERMES. In the following,
we will briefly describe such a framework, to provide the reader with the necessary tools to understand
the parameterizations and the energy-loss equation adopted in our Monte Carlo code.

Friedmann’s Universes

Let us consider the Einstein equation

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν , (3.1)
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in the classical General Relativity framework to describe the gravitational field, where Rµν and R are
the Ricci tensor and scalar, respectively, Tµν is the stress-energy tensor, gµν denotes the metric, G is
the Newton gravitational constant and Λ is the cosmological constant. Under the assumptions of an
isotropic and homogeneous Universe, we consider the Friedmann-Robertson-Walker (FRW) metric

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (3.2)

where a(t) is the scale factor, such that a(0) = 1 is its present value, while the parameter κ accounts for
the spatial curvature: κ = −1 denotes an open metric, κ = 0 a flat metric and κ = 1 a closed metric.
Indeed, we consider the Universe as a perfect fluid with energy density ̺ and pressure p, described by
the stress-energy tensor

Tµν =
(
̺+

p

c2

)
uµuν + pgµν ,

where uµ denotes the 4-velocity. Within the above assumptions, the Einstein equation leads to Fried-
mann equations

H2 =

(
ȧ

a

)2

=
8πG

3
̺− κc2

a2
+

Λc2

3
(3.3)

Ḣ +H2 =
ä

a
= −4πG

3

(
̺+

3

c2
p

)
+

Λc2

3
(3.4)

where H is the time-dependent Hubble parameter. By assuming Λ = 0 and the spatial curvature κ = 0,
the critical density is defined as ̺c = 3H2/8πG and it is used to obtain the well known dimensionless
density parameter

Ω =
̺

̺c
=

8πG

3H2
̺,

a suitable quantity adopted for the comparison of different cosmological models. The density parameter
accounts for the matter and the energy in the Universe, and can be parametrized as the sum of different
contributions. In the standard ΛCDM model, there are some contributions to Ω: Ωb due to baryonic
matter, Ωc due to cold dark matter, ΩΛ due to dark energy, Ωr due to radiation and Ωκ for the spatial
curvature. If we define the redshift z by 1 + z = a−1(t), the first Friedmann equation can be written in
terms of z and of density parameters as

H2(z)

H2
0

= Ωr(1 + z)4 +ΩM (1 + z)3 +Ωk(1 + z)2 +ΩΛ, (3.5)

where ΩM = Ωb+Ωc is the total density of matter and H0 is the Hubble parameter at the present time.
By taking into account that the radiation density contributes only in the early Universe, i.e. at high
redshifts, whereas in practice it is negligible in the late Universe, the constraint ΩM + Ωκ + ΩΛ = 1
for the density parameters can be obtained from very general considerations. Finally, changes in the
expansion rate of the Universe are described by the deceleration parameter

q(z) = − ä

aH2
=
H ′(z)
H(z)

(1 + z)− 1, (3.6)

from which

q(z = 0) = q0 =
1

2
ΩM − ΩΛ (3.7)
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at the present time. The parameter q0 and the density parameters described above can be varied to
reproduce very different cosmological models: in the next chapter, we will show the impact of cosmology
on the GZK horizon of UHECR protons. However, it is worth remarking that we are under the assump-
tions of an isotropic and homogeneous Universe in the approximation of perfect fluid. For practical
applications, it is worth noticing that a particle with energy E(z) at redshift z, propagating through the
Universe and not subjected to energy loss processes, will adiabatically lose its energy because of the ex-
pansion of the Universe (of course, by assuming a cosmological model where the Universe is expanding),
and it will be observed with energy E0 = E/(1 + z) at the Earth.

The values of all relevant parameters discussed so far, as the Hubble constant, the density of matter
and energy, can be freely fixed in our simulator. In the following, we will briefly present the notation
widely adopted in this chapter and in the next ones.

Cosmological units

A common notation to indicate the Hubble parameter at the present time is H0 = 100h km s−1 Mpc−1,
being h a dimensionless number which parametrizes our “ignorance”, whose value ranges from 0.6 to 0.9.
The inverse of H0 defines the Hubble time tH ≡ H−1

0 = 3.09 × 1017h−1 s = 9.78 × 109h−1 yr, whereas
the Hubble distance is given by DH ≡ ctH = 9.26× 1025h−1 m = 3000h−1 Mpc.

Comoving distance and volume

If the ratio v/c is small enough, the approximation z ≈ d/DH is allowed for an object at distance d
from the observer, otherwise a more general formula should be used.

Following Ref. [135], we define the infinitesimal comoving distance δDC as the distance (between
two nearby objects in the Universe) which would be measured with rulers at the time they are being
observed (the proper distance) divided by the ratio of the scale factor of the Universe then to now; it is
the proper distance multiplied by (1+z). As a consequence, the comoving distance between two objects
remains constant with time if they are moving with the Hubble flow. The total comoving distance DC

is obtained by integrating over all the δDC contributions between nearby events along the radial ray
from z = 0 to the object:

DC = DHH0

∫ z

0

dz′

H(z′)
, (3.8)

where DHH0 = c because of our previous definitions. The comoving distance between two events at the
same redshift but separated by an angle δθ on the sky, is DC = DMδθ, where the transverse comoving
distance DM is defined by

DM =





DH
1√
Ωk

sinh
(√

ΩkDC/DH

)
Ωk > 0

DC Ωk = 0

DH
1√
|Ωk|

sin
(√

|Ωk|DC/DH

)
Ωk < 0

. (3.9)

The transverse comoving distance is equivalent to the proper motion distance, defined as the ratio
of the actual transverse velocity (in distance over time) of an object to its proper motion (in radians
per unit time).

Another important quantity for the study of number densities is the comoving volume VC , the volume
in which the number densities of non-evolving objects are constant with respect to the redshift, and it
is calculated by multiplying the proper volume times (1 + z)3. The infinitesimal comoving volume in a
solid angle dΩ and redshift interval dz is given by

dVC = DHH0
(1 + z)2D2

A

H(z)
dΩdz, (3.10)
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where DA = (1 + z)−1DM = (1 + z)−2DL is the angular diameter distance.

Luminosity distance

We define the luminosity distance DL by the relationship between bolometric (i.e., integrated over all
frequencies) flux S and bolometric luminosity L:

DL ≡
√

L

4πS
= (1 + z)DM . (3.11)

If we have to deal with differential flux Sν and luminosity Lν instead of bolometric quantities, a
correction should be applied to the flux or luminosity because the redshifted object is emitting flux in a
different band than that in which the observation is being performed. Such a correction depends on the
spectrum of the observed object, and it can be neglected only if the object has spectrum νLν = const.
For any other spectrum, the differential flux Sν is related to the differential luminosity Lν by

Sν = (1 + z)
L(1+z)ν

Lν

Lν

4πD2
L

, (3.12)

where the ratio of luminosities equalizes the difference in flux between the observed and emitted bands,
and the factor of (1 + z) accounts for the redshifting of the bandwidth.

Spectrum of UHECR and Evolution of sources

Let Q(E) indicate the contribution of a CR source to the spectrum of UHECRs. Such a contribution
is due to the spectrum of UHECR at the source, also known as injection spectrum, representing the
number of particles injected per unit energy and time. The other key quantity is the source luminosity
defined by

L =

∫ Emax

Emin

Q(E)EdE, (3.13)

quantifying the energy emitted from the source in terms of UHECR per unit time. Here, we are assuming
that UHECR at the source can be produced from a minimum energy Emin to a maximum energy Emax.
There are some arguments predicting a power-law injection spectrum of both Galactic and extragalactic
CRs [37, 43, 57]. Under such an assumption, we can rewrite the injection spectrum as a function of the
source luminosity by Q(E) = LNE−γ , being γ the injection index and N a normalization factor. The
source luminosity may increase with redshift, as well as the comoving density of sources: in general such
a cosmological source evolution depends on several factors, related to the class of astrophysical sources
under consideration. If the source evolution is present, the luminosity should include an additional
factor H(z) = (1 + z)m, giving L(z) = H(z)L. As we will see in the following, the source evolution
factor can play a significant role for the study of the energy spectrum of UHECR at Earth. Thus, the
injection spectrum becomes Q(z, E) = H(z)Q(0, E). We report in this section some common evolution
factors useful for successive applications:

• Star formation rate (SFR) [136]:

HSFR(z) =





(1 + z)3.4 z < 1,
23.7(1 + z)−0.3 1 < z < 4,
23.7 × 53.2(1 + z)−3.5 z > 4;

(3.14)

• Gamma-ray burst (GRB) [137]: HGRB(z) = (1 + z)1.4HSFR(z);
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• Active galactic nuclei (AGN) [138, 139]:

HAGN(z) =





(1 + z)5 z < 1.7,
2.75 1.7 < z < 2.7,

2.75 × 100.43(2.7−z) z > 2.7;

(3.15)

• Quasi-stellar object (QSO) [140]:

HQSO(z) =





(1 + z)3 z < 1.9,
(1 + 1.9)3 1.9 < z < 2.7,

(1 + 1.9)3e1−z/2.7 z > 2.7.

(3.16)

In the case of a uniform evolution Hunif(z) = (1 + z)3, whereas in the case of no evolution H(z) = 1
can be assumed.

3.2 Modeling the extragalactic background radiation

The modeling of the EBR is rather difficult, if the well known cosmic microwave background is excluded.
In this section we will briefly describe the backgrounds simulated in HERMES and we will only define
the parameterizations that we have adopted for our simulations.

In the last decades many effort have been made to investigate the extragalactic background light
(EBL). Such a radiation should be produced by the assembly of matter into stars and galaxies, as
well as by the evolution of such systems which releases radiant energy powered by gravitational and
nuclear processes. Absorption of large frequency radiation by dust and re-emission at small frequency
considerably increase the infrared component of the background light, whose investigation should shed
light on structure formations processes. In the top-left panel of Fig. 3.4 we show the spectral power
per unit surface and solid angle νIν , for each radiation, in units of nW m−2 sr−1, as a function of the
wavelength (energy) of background photons. The conversion to the energy density, in units of eV cm−3,
is easily obtained by the relation

ǫ2nǫ = 2.62× 10−4 νIν (3.17)

where ǫ is the photon energy in eV and nǫ is the photon spectral number density in units of photons
cm−3 eV−1.

EBL spans over almost 20 decades, according to observations and models, from radio waves around
10−7 eV up to the high energy γ−ray photons of several GeV, with cosmic microwave background
(CMB), the relic blackbody radiation from the Big Bang, being the dominant form of electromagnetic
energy followed by ultraviolet/optical (CUVOB) and infrared backgrounds (CIB). In Fig. 3.1 we show
the measurements of the multi-wavelength extragalactic background radiation (Kneiske, 2006).

3.2.1 Cosmic microwave background

CMB is an electromagnetic radiation filling the observable Universe and represents a landmark test of the
Big Bang model of the Universe. In the early stages of the Universe, hot plasma and radiation dominated,
permeating the cosmos with a uniform fog making it opaque at the highest redshifts. Successively, the
Universe became cooler by expanding in space-time and when it cooled enough, stable atoms could form:
such atoms were able no more to absorb the thermal photons and the Universe became transparent. Relic
photons of CMB produced at that stage, the so-called surface of last scattering, have been propagating
through the whole Universe, with an energy decreasing with the expansion of the Universe. The energy
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Figure 3.1: Measurements of the multi-wavelength extragalactic background radiation (T. Kneiske, 2006).

distribution of CMB photons can be nicely modeled by a blackbody radiation, described by the Planck’s
law

Iν(T ) =
2hν3

c2

(
e

hν
kBT − 1

)−1

(3.18)

with temperature T0 ≃ 2.725 K, being kB ≃ 8.6 × 10−5 eV K−1 the Boltzmann constant, h ≃ 4.1 ×
10−15 eV s the Planck constant and c ≃ 3.0× 108 m s−1 the speed of light in the vacuum. By assuming
that the cosmological model of gravitation is described by general relativity and electromagnetism by
Maxwell theory, a theoretical consequence of the adiabatic expansion of the Universe is that photons
should propagate along null geodesics and that the CMB temperature should evolve with redshift as
T (z) = T0(1 + z)1−β , with β = 0. From the same arguments, it can be shown that the energy of CMB
photons evolve as E(z) = E0(1 + z), whereas their number density evolve as nǫ(z) = nǫ(z = 0)(1 + z)3.

In the left panel of Fig. 3.2 we show the skymap of CMB obtained from seven years observations of
WMAP (Wilkinson Microwave Anisotropy Probe) satellite. The anisotropic distribution of the radiation
is even more evident in the right panel of the same figure, where the corresponding power spectrum
is shown as a function of multipole moment l. Such observations allow the estimation of cosmological
parameters with unprecedented accuracy. In Tab. 3.1 we show the obtained values for cosmological
parameters which play a significant role in the propagation of UHECR, including protons, heavier nuclei
and photons.

3.2.2 Cosmic infrared/optical background

The infrared background is a radiation of extragalactic origin, and it is therefore expected to be isotropic
on large scales. The spectrum will depend in a complex way on the characteristics of the luminosity
sources, on their cosmic history, and on the history of dust formation and the distribution of dust
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Figure 3.2: Left: Skymap of CMB radiation from 7-years WMAP measurements obtained from a weighted linear com-
bination of the five WMAP frequency maps (23, 33, 41, 61 and 94 GHz), minimizing the galactic foreground
contribution to the sky signal (credits: NASA Goddard Space Flight Center, WMAP Science Team). Right:

Corresponding power spectrum as a function of multipole moment l from observations of WMAP and other
experiments (dots) and from predictions of ΛCDM cosmological model [141].

Parameter 7-year Fit 5-year Fit
102Ωbh

2 2.258+0.057
−0.056 2.273± 0.062

Ωch
2 0.1109± 0.0056 0.1099± 0.0062

ΩΛ 0.734± 0.029 0.742± 0.030
Derived parameters

t0 13.75± 0.13 Gyr 13.69± 0.13 Gyr
H0 71.0± 2.5 km/s/Mpc 71.9+2.6

−2.7 km/s/Mpc
Ωb 0.0449± 0.0028 0.0441± 0.0030
Ωc 0.222± 0.026 0.214± 0.027

Table 3.1: Cosmological parameters directly involved in the propagation of UHECR: six-Parameter ΛCDM fit to WMAP

data only [141].

relative to the luminosity sources. Experimentally, direct measurements of the CIB are very difficult.
From a technical point of view the major challenge is to make absolute sky brightness measurements
relative to a well-established zero flux level, where emission from telescope and instrument components
and the Earth’s atmosphere must be eliminated. Scattered and diffracted light from the very bright
local sources (Sun, Earth, and Moon) must also be strongly rejected. In practice, this requires that
observations be conducted with carefully designed, cryogenically cooled instruments located above the
Earth’s atmosphere. Confident measurement of the CIB requires sufficient observation time to identify
and eliminate potential sources of systematic measurement errors [142]. In Fig. 3.3 we show three
skymaps of CIB radiation, measured from DIRBE satellite, for three different values of the wavelength,
namely 100, 140 and 240 µm.

In the bottom-left panel of Fig. 3.4 we show the predictions of EBL from backward evolution models,
which extrapolate the spectral properties of local galaxies to higher redshifts using some parametric
form for their evolution. In their simplest form, commonly referred to as no evolution models, these
models assume that neither the spectral energy distribution nor the comoving number density of galaxies
evolve with time. The spectral luminosity density is therefore explicitly independent of redshift. In
forward evolution models (bottom-right panel of Fig. 3.4) the spectral evolution of stellar populations
is taken into account, as well as the stellar, gas, and metallicity content and spectral energy density
of a galaxy as a function of time starting at the onset of star formation. These models rely on a wide
range of computational and observational data sets, such as stellar evolutionary tracks, libraries of
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Figure 3.3: Skymaps of CIB radiation from DIRBE measurements in the wavelength range 100-240 µm (credits: NASA
Goddard Space Flight Center, Diffuse Infrared Background Experiment (DIRBE) Project).

observed and calculated stellar atmospheres, stellar nucleosynthesis yields, and the observed luminosity
functions of galaxies. Assuming an initial formation epoch, cosmological parameters are used to map the
temporal evolution of galaxies into redshift space, allowing direct comparison of the model predictions
with observations. Model parameters are adjusted to match the galaxy number counts, spectral energy
distribution, colors, and metallicity as a function of redshift [142].

Because the extragalactic background light is an integrated measure of cosmic activity, summed
over time and over the wide variety of processes and systems that have populated the Universe, it can
only inform us about global characteristics of cosmic history. A modeling approach which deals with
average properties of the Universe rather than the many complex details involved would most naturally,
and perhaps most informatively, relate to the background radiation. Cosmic chemical evolution models,
here in the top-right panel of Fig. 3.4, use just such an approach, relating in a self-consistent way the
time history of a few globally averaged properties of the Universe. Such models provide a picture of
the evolution of the mean density of stars, interstellar gas, metals and radiation averaged over the
entire population of galaxies in a large comoving volume element. Inputs to the models are tracers
of stellar activity (emitted light) and tracers of the (interstellar medium) ISM in galaxies (absorbed
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Figure 3.4: Top-left: Spectrum of the cosmic background radiations, including Radio (CRB, νIν ∝ ν0.3, Microwave
(CMB, blackbody spectrum at T0 = 2.725 K, UV/Optical (CUVOB) and Infrared (CIB) [142], X-ray (CXB)
[143, 144] and γ−ray (CGB) [145]. Top-right: EBL predicted by semi-analytic and cosmic chemical evolution
models. Bottom-left: EBL predicted by backward evolution models. Bottom-right: EBL predicted by
forward evolution models. For detailed information about each figure, see Ref. [142] and refs. therein.

light). In the same panel we show some semi-analytical models, considering a large number of physical
processes as the cooling of the gas that falls into the halos, a prescription for the formation of stars, a
feedback mechanism that modulates the star formation efficiency, a stellar IMF, and a star formation
efficiency during merger events, in order to reproduce observable galaxy properties. The main advantage
of these models is that, in spite of the many adjustable parameters, they provide a physical approach
to the formation and evolution of galaxies [142]. For a more detailed treatment of infrared and optical
background radiations we refer to [142, 146–151] and Refs. therein.

The evolution of the density of CMB photons is simply given by E(z) = (1 + z)3, whereas the
evolution of the density of CIB photons is still debated and depends on the adopted scenario for the
luminosity evolution. Two models, included in HERMES, have been recently suggested by Stecker et al
[148]:

1. Base-line model:

E(z) =





(1 + z)3.1 z ≤ 1.3
(1 + 1.3)3.1 1.3 < z ≤ 6
0 z > 6

(3.19)
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Figure 3.5: Haslam 408 MHz skymap of CRB radiation, derived from 4 separate surveys (credits: NASA Goddard Space
Flight Center, LAMBDA).

2. Fast model:

E(z) =





(1 + z)4 z ≤ 1
(1 + 1)4 1.3 < z ≤ 6
0 z > 6

(3.20)

In the current cosmological epoch and at the IRB maximum epoch, which is around z = 2, the fast
evolution model provides an higher density than base-line model. In any case, it is worth remarking
that the cosmological evolution of the infrared background density is much slower than that of CMB.

We will see further in this chapter that the infrared background is negligible when the propagation
of high energy protons is considered: conversely, it plays an important role during the propagation of
high energy nuclei.

3.2.3 Cosmic radio background

The real intensity of the CRB radiation is poorly known, as in the case of the CIB, because of the
lack of experimental observations due to our galaxy, being responsible of emitting and absorbing in the
corresponding frequency range.

The main contributions to the radio background are provided by normal galaxies and radio galaxies,
with a significant correlation with the evolution of the infrared background [152]. It has been speculated
that the CRB signal could be dominated by the contribution of star-forming galaxies at high redshift if
the far infrared-radio correlation evolved in time, even if it has been recently shown that star-forming
galaxies can only account for ≈ 13% of the observed intensity of the CRB [152].

One of the first models of the CRB, in agreement with current observations at that time, is due
to Protheroe and Biermann, who have provided a new estimation of extragalactic radio background
radiation down to kHz frequencies [153]. The intensity of the CRB at any given frequency is given by

Iν =
c

4πH0

∫ ∞

0

εν′(z)

(1 + z)H(z)
dz, (3.21)

where H(z) reflects the cosmological expansion, ν ′ = ν(1 + z) is the initial frequency of photons at
which the photons observed today with a frequency ν were emitted and

εν′(z) =

∫ ∞

0
n(ω, z)Lν′(ω)dω (3.22)

is the average emissivity per unit volume. Here, ω denotes the star formation rate (SFR) of the galaxy,
Lν′(ω) is the luminosity function, n(ω, z) indicates the number density of galaxies with SFR between ω
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and ω + dω, and the contributions of all the galaxy at a redshift z are taken into account through the
sum over any z.

The main contribution to the CRB is due to normal galaxies and is uncertain because of uncertainties
in their evolution. As long as luminosity linearly depends on the instantaneous star formation rate, the
average emissivity can be expressed in terms of the variation rate of the cosmic SFR density [154]. The
brightness temperature of the CRB has been recently estimated to be

T = 0.0137 K
( ν

GHz

)−2.1
(3.23)

for young, massive stars producing intense UV radiation that ionizes the surrounding medium, and
thermal bremsstrahlung from these free electrons, and

T = 0.1402 K
( ν

GHz

)−2.7
(3.24)

for synchrotron emission, assuming the evolution of the far infrared-radio correlation [152].
The evolution of the density of CRB photons included in HERMES is the one proposed by Protheroe

and Biermann, who modified the luminosity evolution to fit the source counts [153]:

E(z) =
{

(1 + z)4 z < 0.8
(1 + 0.8)4 z ≥ 0.8

(3.25)

where the value z0 = 0.8 has been obtained from the best fit for both normal galaxies and radio galaxies.
In Fig. 3.5 we show the skymap for the CRB radiation obtained by combining 4 separate surveys.

We will see further in this chapter that the radio background is negligible when the propagation of high
energy nuclei is considered: conversely, it plays an important role during the propagation of high energy
photons.

Note. For a blackbody, the brightness Iνdν is defined as the amount of energy per unit surface,
time and solid angle, emitted between ν and ν+dν. The fraction of the blackbody radiance determined
by the emissivity εν defines the inverse of the brightness temperature by

T −1
ν =

kB
hν

ln


1 +

e
hν

kBT − 1

εν




where T is the temperature of the blackbody. In the case of low frequency, or, equivalently, at very
high temperatures, we can use the Rayleigh-Jean approximation of the Planck’s law to estimate the
temperature

Tν =
c2Iν
2kBν2

as a function of the frequency ν. Within such approximation, the brightness temperature is defined by
the simple relation Tν = ενTν .

3.2.4 Summary of the parameterizations included in HERMES

For the propagation of UHECR nuclei, in HERMES we adopt the blackbody model for CMB and
the semi-analytical “model D” proposed by Finke et al [151], modeling the star formation rate recently
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Figure 3.6: Different parameterizations of extragalactic background radiation as a function of relic photon energy: CMB,
(Far, Low and High) IRB and COB. The red line indicates the EBL parameterization included in HERMES.
The other parameterizations, shown for reference, are taken from PSB76 [155], FIRAS [156], ER98 [157],
Mkn501-98 [158], U06 [159]. Photon energy is considered in the laboratory frame.

introduced by Hopkins and Beacom [136] for CIOB, with redshift evolution specified in the corresponding
paragraphs of this section.

Some models of extragalactic background radiations are shown in Fig. 3.6, as a function of the photon
energy ǫ in the laboratory frame. The red solid line indicates the EBL parameterization included
in HERMES, and it should be considered the default, where not specified otherwise. For sake of
completeness, we also show the common parameterizations by Puget, Stecker and Bredekamp (PSB76)
for COB, lower and higher IRB (LIR and HIR, respectively) [155], and other IRB models, derived from
theoretical arguments or experimental observations [156–159].

3.3 Modeling and simulation of energy-loss processes

During their propagation, photons, neutrinos and nuclei (A,Z) (electric charge, mass) with injection
energy Ei, generally undergo interactions with background photons. UHECR that reach the Earth are
therefore detected with a degraded energy Ef < Ei, depending on the type of interactions they were
subjected to and on the distance between the source and the Earth. In HERMES, we describe the
energy loss in a unit interval of z in terms of equations like

1

E

dE

dz
= −β(z, E)

dt

dz
, (3.26)

where

− dt

dz
=

1

H0(1 + z)

[
ΩM (1 + z)3 +ΩΛ + (1− ΩM − ΩΛ)(1 + z)2

]− 1
2 (3.27)

is the general metric element accounting for the cosmological expansion [140, 160, 161], and the involved
cosmological parameters have been introduced in Sec. 3.1. The function β(z, E) is related to the cooling
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rate of the UHE particle and it depends on the particular energy loss process considered. As we will see
further in this section, β(z, E) is proportional to the inverse of the mean free path and depends on the
density of background photons and their energy, on the energy of the UHECR and on the cross section
of the interaction under investigation. In the case of nuclei, it also depends on the nuclear mass and
charge. Thus, the total energy loss rate is obtained by

1

E

dE

dz
= − dt

dz

∑

process

βproc(z, E), (3.28)

where the sum is extended to all interactions acting during the propagation. In HERMES, we include
only those interactions which have a significant impact on the propagation of UHECR:

• Adiabatic loss: it is due to the expansion of the universe; it is considered for all nuclei with
A ≥ 1, photons and neutrinos;

• Pair production: it involves the creation of a positron/electron pair; it is considered for all nuclei
with A ≥ 1 and photons;

• Photo-pion production: it involves the creation of one or multiple pions; it is considered for all
nuclei with A ≥ 1;

• Photodisintegration: it involves the fragmentation of the original nucleus, with the creation of
lighter nuclides (generally referred to as fragments); it is considered for all nuclei with A ≥ 2;

• Inverse Compton and synchrotron emission: it is considered for photons and pairs which
are part of the electromagnetic cascade generated by nuclei.

In the following we will take into account the interactions of nuclei with cosmic microwave background
(CMB) and cosmic infrared/optical background (CIOB) radiations, by adopting the parameterization
described in Sec. 3.2.4 (see Fig. 3.6) for the extragalactic background radiation.

Moreover, for the sake of simplicity, we will omit to specify that results shown in the following plots
have been obtained from HERMES. Where it will be not the case, we will specify the corresponding
source. Finally, in this section we will describe the propagation of UHECR with no regards of magnetic
fields: such an approach is generally known as “1D propagation”.

3.3.1 Cross section of pγ interactions

The probability of UHE protons to interact with background photons rapidly increases with proton
energy. If E and ǫ are the energies of the UHE proton and the photon in the observer rest frame,
respectively, the interaction is equivalent to a collision with a high energy photon with energy ǫ′ =
Γǫ(1− cos θ), being θ the collision angle. For instance, when the energy ǫ′ equals at least the pion mass
mπc

2 ≈ 140 MeV, the proton undergoes photo-meson production and loses energy. Such a process is
known as Greisen-Zatsepin-Kuzmin effect and dominates above 50 − 60 EeV [29, 30]. The two main
channels for the interaction, close to the threshold energy, are

p+ γEBR −→ ∆(1232 MeV) −→
p+ π0

n+ π+,
n −→ p+ e− + ν̄e.

involving the resonance ∆(1232 MeV). At higher energies, heavier resonances and multi-pion production
channels are likely. Just above the threshold, baryonic resonances dominate and protons are subjected
to photo-meson production, mainly through the ∆(1232)-baryon resonance, whereas heavier resonances
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Figure 3.7: Total cross section for pγEBR interactions as a function of the background photon energy ǫ′ in the proton
rest frame: experimental data (dots) and the different contributions due to baryonic resonances (BR), direct
particle (RP) and multi-pion (MP) production are shown as reported in Refs. [162, 163] (left panel) and as
obtained from HERMES, following Rachen’s parameterizations (right panel).

(up to ∆(1950)-baryon) play a more marginal role. We parameterize the cross-section for baryonic
resonances by

σBR(ǫ) =
4∑

i=1

σiσL(ǫ; ǫi,Γi)

where σL is the Lorentzian function, (ǫi (GeV), Γi (GeV), σi (µb)) = (0.34, 0.17, 351), (0.75, 0.50, 159),
(1.00, 0.60, 21) and (1.50, 0.80, 26) for i = 1, 2, 3 and 4, respectively. For all other processes participating
in photo-meson production, including multipions (MP) or direct particle production involving π, η, ∆,
ρ, ω and strange-particle channels (RP), we use Rachen’s parameterizations [162]. In Fig. 3.7 we show
the contributions of each channel to the total cross sections. In the left panel the comparison between
the cross section obtained by Rachen and experimental data is shown [162, 163], whereas in the right
panel of the same figure we show the cross section obtained from our simulator, putting in evidence the
good agreement.

In the following we will use the abbreviation “BR” to refer to baryonic resonances, direct particle
and multi-pion production, where not specified otherwise.

3.3.2 Interaction lengths for pγ interactions

The general formula for the estimation of the interaction length (or, equivalently, mean free path) is
given by

λ−1
A (z, E) = E(z) c

2Γ2
A

∫ ǫmax

ǫthr/2ΓA

dǫ
n(ǫ)

ǫ2

∫ 2ΓAǫ

ǫthr

dǫ′ǫ′σ(ǫ′) (3.29)

where now ΓA = (1 + z) E
Ampc2

is the Lorentz factor of the nucleus at redshift z, ǫthr is the energy
threshold of the considered process in the nucleus rest frame, n(ǫ) is the density of background photons
with energy ǫ in the observer’s rest frame, ǫ′ is the energy of the photon in the nucleus rest frame
and E(z) is the evolution function of the ambient photon field. It is straightforward to show that
λA(z, E) = (1 + z)−3λA[z = 0, (1 + z)E] when the CMB is considered [164, 165], whereas for other
background radiations a more complicated evolution should be used. By following Stanev et al [164],
we define the average energy loss length by

χloss(z, E) =
E

dE/dz
=
λ(z, E)

κ(E)
, (3.30)
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where κ(E) = 〈∆E〉/E is the mean inelasticity, i.e. the average fraction of energy lost by the nucleus
because of the interaction. The inelasticity for pair production is κ ≈ 2me/(Amp) (being me and mp the
masses of electron and proton, respectively), i.e. around 10−3 in the case of protons, and even smaller
for heavier nuclei. Conversely, for photo-pion production by protons, the inelasticity ranges from 0.2 to
0.5, depending on the energy. For the analytical derivation of the inelasticity factor, see Appendix A.

Adiabatic loss

In order to take into account the energy loss due to the expansion of the universe, we use

βrsh(z) = H0

[
ΩM (1 + z)3 +ΩΛ + (1− ΩM − ΩΛ)(1 + z)2

] 1
2 (3.31)

for the adiabatic term, as previously explained in Sec. 3.1.

Pair production

In the rest frame of the nucleus, the pair production process A + γEBR −→ A + e+ + e− occurs at
the threshold energy 2mec

2 ≈ 1 MeV and it plays an important role only when CMB is considered,
the CIOB partecipating marginally [155]. We can treat the process as a continuous energy loss (CEL),
because the loss per interaction is very small. The energy loss accounting for the pair production, due
to the Bethe-Heitler interaction with ambient photons with density n(ǫ), is given [166] by

βe±(E;Z,A) ∝ αr2eZ
2(mec

2)2
∫ ∞

2
dξn

(
mec

2

2γ
ξ

)
ϕ(ξ)

ξ2

where γ ≈ E/(Ampc
2) is the Lorentz factor of the nucleus, me is the electron mass, α = e2/~c is the

fine-structure constant and re = e2/mec
2 is the classical electron radius. In the case of a blackbody at

temperature T0, as for CMB, the energy loss obtained from the Born approximation becomes [166]

βe±(E;Z,A) =
αr2eZ

2(mec
2kBT0)

2c

π2~3c3E
f(ν),

with

f(ν) = ν2
∫ ∞

2
dξϕ(ξ)

(
eνξ − 1

)−1
, ν =

mec
2

2γkBT0
.

Here, kB is the Boltzmann constant and we multiplied by c in order to obtain a rate. Higher order
terms of the Born approximation, proportional to (Zαv±/c)m, where m is the number of interaction
with the Coulomb field, should be taken into account in the case of nuclei heavier than protons. In fact,
for Z > 1 the symmetry between produced electron and positron breaks down. Blumenthal suggested to
correct the rate through the Sommerfeld factor [166], although it is only valid in the non-relavistic limit.
For nuclei with Z > 1, this correction does not agree with experimental data and a better correction,
namely

S(Z) ≃
[
1− 0.29× (Zα)2 + 0.25× (Zα)4 − 0.25× (Zα)6

]
,

valid in the case of ultra-relativistic particles, has been proposed by Rachen [162], even if it has been
pointed out that Coulomb corrections to the Born approximation have a negligible effect on the pair
production loss rate of ultra-relativistic heavy nuclei as 56Fe [167]. By taking into account the evolution
with redshift in CMB, after some algebra, in HERMES we use

βe±(z, E;Z,A) ≃ S(Z)
α3Z2A2

4π2~

m2
em

2
p

E3

∫ ∞

2
dξ

ϕ(ξ)

exp
[

meAmp

2E(1+z)kBT0
ξ
]
− 1

, (3.32)
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that is similar to the parameterization adopted in Ref. [168], where the auxiliary function ϕ(ξ) is
obtained from Ref. [166, 169] and masses are in units of eV/c2. However, there is no parameterization
in the case of CIOB and, in our code, we estimate the corresponding energy loss rate by using Eq. (3.29).

Photo-pion production

The process has been described in detail in Sec. 3.3.1. In the case of protons propagating in the CMB,
the dominant interaction above 50 EeV, we have

βπ(E) =
m2

p

2E2

∫ ∞

0
dǫ
n(ǫ)

ǫ2

∫ 2ǫ E
mp

0
dǫ′ǫ′κ(ǫ′)σ(ǫ′)

= −kBT0
2π2~

m2
p

E2

∫ ∞

0
dǫκ(ǫ)σ(ǫ)ǫ× ln

[
1− exp

(
− mp

2EkBT0
ǫ

)]
, (3.33)

where mp is the proton mass in units of eV/c2, σ(ǫ) is the cross-section for pion production in terms of
the photon energy ǫ and κ(ǫ) is the inelasticity factor. We parameterize the contribution of this term
as in Ref. [168] by

βπ(z, E; 1, 1) ≃
{
Aπ(1 + z)3 exp

[
Bπ

E(1+z)

]
E ≤ Ematch(z)

Cπ(1 + z)3 E > Ematch(z)
, (3.34)

in order to avoid further numerical integrations. The function Ematch(z) = 6.86e−0.807z×1020 eV ensures
the continuity of the function βπ(z, E; 1, 1) and {Aπ, Bπ, Cπ} = {3.66× 10−8yr−1, 2.87× 1020eV, 2.42×
10−8yr−1} are taken from Ref. [170].

In Fig. 3.8 we show the interaction length λ, in the CIOB and the CMB, for each process separately
and for all processes together, as well as the energy loss length χloss, as a function of the energy E of
the proton in the observer rest frame. In the CIOB, it is evident that the pair production is negligible
with respect to other processes, because occurring on time scales larger than the adiabatic expansion,
for all energies above 1018 eV. A similar argument applies for the photo-meson production in the CIOB,
which, below 1020 eV, contributes less than pair production in the CMB, whereas above 1020 eV the
production of pions in the CMB dominates up to the highest energy. In the energy interval between
2 × 1018 eV and ∼ 5 × 1019 eV, the main energy loss process is the pair production in the CMB. The
obtained results are in perfect agreement with recent literature [77, 165, 171, 172], with small differences
related to the different CIOB adopted.

We treat the case of neutron in a similar way, by considering the additional process of the β−decay.
The neutron decay rate is given by mN/(τnE), with τ ≃ 888.6 s the laboratory lifetime, providing a
range of propagation

λβ = τn
E

mN
≃ 0.9

(
E

1020 eV

)
Mpc, (3.35)

which becomes competitive with photo-pion production only at the highest energy, above 1020 eV.

Cascades generated by UHE protons and neutrons

We have discussed the production of electron/positron pairs and of secondary pions. Additionally, elec-
tron and pairs interact with the extragalactic background photons, participating to the electromagnetic
cascade generated by the primary proton. Conversely, in the case of photo-meson production, close to
the threshold the main channels involve the creation of a single neutral pion π0, with probability ≈ 2/3,
or a charged pion π+, with probability ≈ 1/3. We treat the case when the UHE primary is a neutron
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Figure 3.8: Our estimation of the mean free path λ at z = 0 as a function of the energy of the proton in the observer rest
frame. The contributions due to different processes (adiabatic, pair and photo-pion production) in CMB and
CIOB are shown separately, as well as the total interaction length λtot and the total energy loss length χloss.

Figure 3.9: Photohadronic interactions of relativistic nucleons with an ambient photon radiation field, obtained from the
simulator SOPHIA [173] (lines) and from experiments (dots).

in a similar way, with the production of a π− instead of π+. Pions have small lifetime, of the order
of 10−16 s for π0 and 10−8 s for π±: thus, we neglect their propagation because they quickly decay to
secondary particles, which can decay to other particles (as in the case of secondary muons) generating a
cascade of electrons, positrons, photons and neutrinos. In HERMES, the main decay channels involving
the production of a single pion and including the β−decay of neutrons, are reported below:
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p+ γEBR −→ ∆+ −→
{
p
π0 −→ γ + γ

p+ γEBR −→ ∆+ −→
{
n −→ p+ e− + ν̄e
π+ −→ µ+ + νµ −→ e+ + νe + ν̄µ + νµ

n+ γEBR −→ ∆0 −→
{
n −→ p+ e− + ν̄e
π0 −→ γ + γ

n+ γEBR −→ ∆0 −→
{
p
π− −→ µ− + ν̄µ −→ e− + ν̄e + νµ + ν̄µ

.

In Fig. 3.9 the cross sections for nucleon and photon interactions are shown, as obtained from the data
and as parameterized in SOPHIA, a Monte Carlo program for photohadronic interactions of relativistic
nucleons with an ambient photon radiation field [173]. Channels with single and multi-pion production
are present. It is evident that close to the threshold and for ǫ′ < 1 GeV, the dominating processes
involve single pion production only, whereas at the highest energies channels with two or three pions
are available. With good approximation, it can be assumed that the most relevant processes are:

p+ γEBR −→ ∆++ + π− −→ p+ π+ + π−

p+ γEBR −→ ∆+ + π0 −→
{
p+ π0 + π0

n+ π+ + π0

p+ γEBR −→ ∆0 + π+ −→
{
n+ π0 + π+

p+ π− + π+

n+ γEBR −→ ∆+ + π− −→
{
n+ π+ + π−

p+ π0 + π−

n+ γEBR −→ ∆0 + π0 −→
{
n+ π0 + π0

p+ π− + π0

n+ γEBR −→ ∆− + π+ −→ n+ π− + π+,

where the secondary particles produced from pions and β−decay of neutrons have been omitted for
simplicity. The inclusion in HERMES of such channels is currently under development.

3.3.3 Cross section of Aγ interactions, photo-disintegration and decay chain

As in the case of protons, the probability of UHE nuclei to interact with background photons rapidly
increases with nucleus energy. The processes involved in such interactions are the same that we have
previously described in the case of protons, namely pair and photo-pion production. However, in the
case of heavy nuclei we have to take also into account the photo-disintegration (or photo-erosion) process

A
ZX + γ −→A′

Z′ Y +mα+ [(Z − Z ′)− 2m]p+ [(A−A′)− (Z − Z ′)− 2m]n, (3.36)

resulting in the emission of subatomic particles, with the creation of lighter nuclides. Here, m is the
multiplicity of α particles, p indicates the proton and n the neutron. In general, in order to describe
the changes in abundance of the heavy nuclei as a result of the interaction of the UHECR with the
background radiation, a nuclear reaction network including all interactions of interest should be used.
Such a network is described by a system of coupled differential equations corresponding to all the
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Figure 3.10: Puget-Stecker-Bredekamp (PSB) decay chain for the iron nuclei [155] adopted in HERMES. Picture taken
from Ref. [174].

reactions affecting each nucleus, i.e. mainly photo-disintegrations and β−decays. Such an approach has
been recently proposed, and adopted in many successive works, in Ref. [175] for the study of UHE nuclei
propagation by using up to date measurements of cross sections [176]. Instead of direct measurements,
other recent works related to this topic [174, 177, 178] make use of TALYS [179, 180], a software for the
most likely simulation of nuclear reactions.

We adopt the simplest approach to the treatment of the photo-disintegration channels, by follow-
ing the chain of stable nuclei (stability chain), as suggested for the first time by Puget, Stecker and
Bredekamp (PSB) [155]. The PSB chain included in HERMES is shown in Figure 3.10, together with
the other nuclei involved in the reaction network. The relative contribution of all decay channels cor-
responding to nuclei with A ≤ 56 are taken from Ref. [155] and [167]. However, in order to produce
more realistic simulations of the photo-disintegration process, we have obtained from TALYS reactions
the branching ratios associated to the most relevant exclusive channels, including one nucleon, two nu-
cleons and multi-nucleons emission on CMB and CIOB, similarly to recent studies [174, 177]. Hence,
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in HERMES, we have included different models for the photo-disintegration of nuclei, with cross sec-
tions corresponding to: i) the PSB Gaussian approximation; ii) the Rachen’s parameterizations; iii) the
TALYS reactions. In the following, we will briefly describe the first two models, involving analytical
approximations.

In the nucleus rest frame, nuclear photo-disintegration is dominated by the giant dipole resonance
(GDR) for a photon energy smaller than 30 MeV. The emission of one or two nucleons represents the main
process, although multi-nucleon emission is still possible. Above 30 MeV and below 150 MeV, nuclei
are mainly subjected to quasi-deuteron (QD) effect, where the photon interacts with a nucleon pair
while they are scattering within the nucleus, leading to the ejection of the pair and possibly additional
nucleons [155]. Above 150 MeV, baryonic resonances (BR) generally dominate: nuclei undergo to photo-
meson production, mainly through the ∆(1232)-baryon resonance, whereas heavier resonances (up to
∆(1950)-baryon) play a more marginal role. As in the case of protons, Rachen’s parameterizations
(RP) can be adopted for all processes participating to photo-meson production, including direct particle
production involving π, η, ∆, ρ, ω and strange-particle channels [162]. At energies above 1 GeV the
photo-fragmentation (PF) occurs and the nucleus breaks into fragments of lower mass and energy. The
rate of photo-disintegration with the emission of j nucleons is obtained from Eq. (3.29), and it is given
by

Rdis,j(z, E;Z,A) = E(z) 1

2Γ2
A

∫ ǫmax

ǫthr/2ΓA

dǫ
n(ǫ)

ǫ2

∫ 2ΓAǫ

ǫthr

dǫ′ǫ′σA,j(ǫ
′) (3.37)

where ΓA = (1 + z) E
Amp

is the Lorentz factor of the nucleus at redshift z, ǫthr is the energy threshold
of the considered process characterized by cross section σA,j , n(ǫ) is the density of background photons
with energy ǫ in the observer’s rest frame and ǫ′ is the energy of the photon in the nucleus rest frame.
By considering the interaction rate of all reaction channels for a given nucleus, the quantity of interest
should be the effective nucleon loss rate, defined by

Rdis,eff(z, E;Z,A) =
∑

j

jRdis,j(z, E;Z,A), (3.38)

with an energy loss rate is given by

βdis,eff(z, E;Z,A) = Rdis,eff(z, E;Z,A)κ(E;A), (3.39)

where κ(E;A) is the average inelasticity factor accounting for the average fraction of energy loss in
one collision. For photo-disintegration processes we can simply consider κ(A) ≈ j/A, whereas for pion
production we adopt

κ(E;A) =
1

2

(
1 +

m2
π −A2m2

p

s

)
, (3.40)

where
√
s is the total 4-momentum of the nucleus-photon system [181].

A common parameterization adopted for the contribution of the GDR has been originally proposed
by PSB [155], and later updated in Ref. [167]:

σGDR(ǫ;A, j) = ξjΣdW
−1
j e−2(ǫ−ǫp,j)

2/∆2
j ǫthr ≤ ǫ ≤ ǫ1, (3.41)

where ξj , ǫp,j and ∆j are obtained by fitting nuclear data (see tables in Ref. [155]), ǫ1 = 30 MeV and
updated values of the energy thresholds ǫthr, for both one and two nucleons disintegration channels, are
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Figure 3.11: Total cross section for Aγ interactions as a function of the background photon energy ǫ′ in the nucleus
rest frame, obtained from HERMES, following Rachen’s parameterizations. Left: Case of an iron nucleus
(A = 56). The different contributions due to giant dipole resonance (GDR), quasi-deuteron (QD), baryonic
resonances+direct particle production (BarR) and multi-pion production (PF) are shown. The parameteri-
zation of the GDR proposed by Puget et al [155] is reported, as well as the up to date measurements of cross
sections [176] (diamonds). The cross section for GDR and QD obtained with TALYS [179, 180], a software
for the simulation of nuclear reactions, is shown. Right: Scaling of the cross section with respect to the
nuclear mass, as a consequence of Rachen’s parameterizations.

given in Ref. [167]. The integrated cross section in this region can be approximately estimated through
the Thomas-Reiche-Kuhn sum rule

Σd ≡
∫ ∞

0
dǫσ(ǫ) =

2π2e2~

mpc

(A− Z)Z

A
≈ 60

(A− Z)Z

A
µb GeV,

while the function Wj is given by

Wj = ∆j

√
π

8

[
erf

(
ǫmax − ǫp,j

∆j/
√
2

)
+ erf

(
ǫp,j − ǫ1

∆j/
√
2

)]
. (3.42)

The above parameterization makes the assumption that the total photo-disintegration cross-section
can be approximated by a Gaussian function with a cut below the theoretical reaction threshold. An
alternative approximation, based on Lorentzian functions, has been proposed and has been shown to
better fit the data [175]. However, it has been also shown that, in practice, the energy loss rate exhibits
small differences in the two cases for 11 ≤ A ≤ 56 and virtually no differences for A < 11 [182]. Thus,
following Rachen [162], we have also included the parameterization given by

σGDR(ǫ;A) = 720µb A
7
6

Γ2
GDR(

ǫA
1
6 − EGDR

)2
+ Γ2

GDR

(3.43)

with EGDR = 35.3 MeV A−1/6 and ΓGDR = 15.1 MeV A−1/6. We follow Ref. [162, 175, 183–185]
for the parameterization of the cross sections for the remaining process, namely QD and photo-meson
production (including BR, RP and PF):
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σQD(ǫ;A) = 550µb A
5
4

(
ǫ

ǫQD

− 1

) 3
2
(

ǫ

ǫQD

)−3

(3.44)

σBR(ǫ;A) = A
4∑

i=1

σiσL(ǫ; ǫi,Γi) (3.45)

σRP(ǫ;A) = A [53.3Ef (ǫ; 0.15, 0.15)Ef (−ǫ;−0.65,−0.2) + Pl (ǫ; 0.15, 0.3, 6)

+ 62.4Pl (ǫ; 0.321, 0.55, 3.5) + 1.5Pl (ǫ; 0.7, 1.2, 4) + 16.7Pl (ǫ; 0.321, 2.0, 0.2)

+ 7.2Pl (ǫ; 0.512, 1.3, 1.1) + 3.2Pl (ǫ; 1.0, 1.4, 4.6)] (3.46)

σPF(ǫ;A) = 1µb A0.91
(
1− 2.48e−ǫ/0.8 GeV

) (
69.8s0.081 + 64.3s−0.453

)
(3.47)

where ǫQD ≈ 0.0333 GeV A− 1
6 , s = 0.88+ǫ/0.532 GeV, (ǫi (GeV), Γi (GeV), σi (µb)) = (0.34, 0.17, 351),

(0.75, 0.50, 159), (1.00, 0.60, 21) and (1.50, 0.80, 26) for i = 1, 2, 3 and 4, respectively. Rachen’s parame-
terizations are defined by

Pl (x;xth, xmax, α) =

(
x− xth

xmax − xth

)A−α( x

xmax

)−A

, A = α

[
xmax

xth

]
(3.48)

Ef (x;x0, w) =
1

2

[
1 + erf

(
3√
2

2x− 2x0 − w

|w|

)]
(3.49)

with Pl (x;xth, xmax, α) = 0 for x < xth. Here, x is in GeV and the resulting cross-section is given in µb
units.

In Fig. 3.11 we show the obtained total cross section for Aγ interactions as a function of the back-
ground photon energy ǫ′ in the nucleus rest frame. In the left panel we consider the case of an iron
nucleus (A = 56), where the parameterization of the GDR proposed by PSB is reported, as well as the
up to date measurements of in this energy range1 [176] (diamonds), the cross sections for GDR and QD
obtained with TALYS are also shown. In the right panel of the same figure, the scaling of the cross
section with respect to the nuclear mass, as a consequence of Rachen’s parameterizations, is shown. In
Fig. 3.12 we show the comparison between the total cross sections estimated for iron (left panel) and
proton (right panel) nuclei, together with the contribution of each single process separately.

For the sake of completeness, it is worth remarking that in HERMES the inclusion of some additional
processes, not depending on the background radiation, are currently under development:

A
ZX −→A

Z+1 Y + e− + ν̄e β− − decay,
A
ZX −→A

Z−1 Y + e+ + νe β+ − decay,
A
ZX + e− −→A

Z−1 Y + νe electron capture.

3.3.4 Interaction lengths for Aγ interactions

For Aγ interactions, the differences in the cross section (with respect to the case of protons) are reflected
in the interaction length. In both cases shown in Fig. 3.12, the available channels above the threshold
for single pion production (ǫ′ ≈ 145 MeV) involve baryonic resonances and direct particle production,
with multi-pion production playing a significant role at the highest energies (ǫ′ > 700 MeV). In the
case of iron, the additional channels due to photo-disintegration process are evident at lower energies
(1 < ǫ′ < 150 MeV). The energy loss due to the pair production, Eq. (3.32), and to the adiabatic loss,

1We are in debt with E. Khan for having provided the data shown in the figure.
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Figure 3.12: Comparison between the total cross section for FeγEBR (left panel) and pγEBR (right panel) interactions as
a function of the background photon energy ǫ′ in the nucleus rest frame, obtained from our simulation code,
following Rachen’s parameterizations.

Figure 3.13: Our estimation of the mean free path λ at z = 0 as a function of the energy of the nucleus in the observer
rest frame. The contributions due to different processes (adiabatic, pair and photo-pion production, as well
as giant dipole resonance and quasi-deuteron effect for photo-disintegration) in CMB and CIOB are shown
separately. The total interaction length λtot and the total energy loss length χloss are shown as well in the
case of Carbonium 12

6 C (left panel) and Iron 56
26Fe (right panel) nuclei: for the latter, the λtot estimated by

Allard et al [185, 186] is reported for reference.

Eq. (3.31), occurs in any case, with significant contributions only in a small range of energies. We treat
the photo-pion production similarly to the case of protons by using Eq. (3.29) and the ∆−baryon decay
channels. The energy loss equation, defined by Eq. (3.28), still applies but coupled to the nuclear mass
loss rate

1

A

dA

dz
= − dt

dz
βdis,eff(z, E;Z,A), (3.50)

leading to

1

E

dE

dz
=

1

Γ

dΓ

dz
+

1

A

dA

dz
. (3.51)

An analytic approach for the estimation of the spectra at Earth, based on the numerical integration
of such an equation, has been recently reported in Ref. [187]. In Fig. 3.13 we show our estimation of the
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Figure 3.14: Left: Total mean free path λtot in CMB and CIOB for several nuclei at z = 0, from proton (A = 1) to iron
(A = 56), as a function of the Lorentz factor Γ. Right: Same as in the left panel, but for the total energy
loss length χloss.

Figure 3.15: Evolution of the total energy loss length χloss in CMB and CIOB as a function of the energy of the nucleus
in the observer rest frame, for different values of the redshift. Left: Case of proton. Right: Case of iron.

interaction length λ at z = 0, as a function of the energy E of the nucleus in the observer rest frame,
in the case of Carbonium 12

6 C (left panel) and Iron 56
26Fe (right panel) nuclei. The contributions due

to all processes discussed so far, in CMB and CIOB, are also shown separately, as well as total energy
loss length χloss. In the case of iron, the figure shows that the main energy loss below 1019 eV is due to
the adiabatic expansion of the universe, whereas photo-disintegration process through the giant dipole
resonance dominates above 1019 eV and photo-meson production becomes dominant above 1022 eV.

The estimation of the total interaction (left panel) and energy loss (right panel) lengths at z = 0
obtained with HERMES are also shown in Fig. 3.14 as a function of the Lorentz factor Γ, for several
nuclei, from proton to iron. Both quantities decrease for increasing nuclear mass and for any value of the
energy, although the energy loss length tends to be the same for all nuclei above Γ = 1011, approximately
the value where baryonic resonances occur. In Fig. 3.15 we also show the evolution with redshift of the
total energy loss length as a function of the energy, for a proton (left panel) and for an iron (right panel)
nucleus, for different values of the redshift, ranging from z = 0 to z = 4.
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3.4 Propagation of secondary neutrinos and photons

In the previous sections we have discussed the production of secondary particles, mainly electron/positron
pairs and charged or neutral pions, because of the interaction between UHE nuclei and background pho-
tons during the propagation in the extragalactic space. In this section we will briefly describe the
propagation of the decay products of pions, causing the flux of neutrinos and the electromagnetic cas-
cade (involving pairs and photons) simulated with HERMES.

Neutrinos

The main mechanisms involved in the creation of neutrinos are the decay of charged pions

π+ −→ µ+ + νµ −→ e+ + νe + ν̄µ + νµ,

π− −→ µ− + ν̄µ −→ e− + ν̄e + νµ + ν̄µ,

created from photo-pion production of nuclei, the β−decay of neutrons

n −→ p+ e− + ν̄e,

and the instability processes of heavy nuclei previously described (β−decays and electron capture).
Neutrinos are chargeless particles with negligible mass, undergoing interactions only through the

weak nuclear force (and gravity, if they are considered massive particles). Because of such features,
neutrinos are likely to traverse the extragalactic space, even for cosmic distances, without interacting
with background photons or interstellar medium, and without being deflected by magnetic fields: char-
acteristics that makes neutrinos the ideal candidates for particle astronomy. On the other hand, the flux
of cosmogenic neutrinos is relatively small if compared to the flux of charged particles, at the highest
energy.

Propagation and energy loss of neutrinos, can be easily described by energy loss equation (3.28),
considering only the adiabatic energy loss rate defined by Eq. (3.31).

Photons

High energy photons are produced from the decay of neutral pions (π0 −→ γγ). Although photons, as
neutrinos, are chargeless and massless particles, they undergo interactions through electroweak force.
In the specific case of photons, the cosmic radio background (CRB) plays a fundamental role at highest
energy, whereas CMB and CIOB are relevant at smaller energies. Together with electrons and positrons,
photons are responsible for the creation and the development of the electromagnetic cascade generated
during the propagation of charged nuclei.

Their propagation is dominated by pair production (PP) and double pair production (DPP), despite
the latter can be neglected for energies below 1000 EeV. In the case of electrons and positrons the
relevant energy-loss processes are the inverse Compton scattering (ICS) and the triplet pair production
(TPP). Because of its electromagnetic nature, the development of the cascade strongly depends on the
strength of the extragalactic magnetic field: e−/e+ loose most of their energy by synchrotron radiation
if the intensity of the field is strong enough2. The cascade develops no more when the synchrotron
cooling rate becomes smaller than ICS one.

2For a particle with charge Z and mass m, the energy loss rate in a field of squared r.m.s. strength B2 is

dE

dt
=

4

3
σT

B2

8π

(

Zme

m

)4 (
E

mec2

)2

, (3.52)

where σT is the Thomson cross section.
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At variance with the case of charged and massive nuclei, previously described in this chapter, it is
not possible to define the interaction length of photon in terms of the Lorentz factor. In this case, the
general expression for the interaction rate reads

R(z, E) = c

∫ ǫmax

ǫmin

dǫ

∫ 1

−1

d cos θ

2
n(ǫ, z)σ(s)(1− vp cos θ), (3.53)

where vp is the velocity of the incident primary particle. After some algebra, we obtain

R(z, E) =
c

8ξE2

∫ ǫmax

ǫmin

dǫ
n(ǫ, z)

ǫ2

∫ smax

smin

σ(s)(s−m2c4) ds, (3.54)

where
√
s is the energy in the center of mass system and ξ is the velocity of the particle in speed of light

units3. It is worth noticing that we are not defining s as the standard invariant squared momentum.
Photon pair production occurs when two photons interact to produce an electron-positron pair

(γ+γEBR −→ e−+ e+). The total cross section for such a process, in the case of a primary photon with
energy E scattering off (with angle θ) a background photon with energy ǫ, is given by

σPP (E, θ) =
3

16
σT (1− ξ2)

[
(3− ξ4) log

1 + ξ

1− ξ
− 2ξ(2− ξ2)

]
, (3.55)

where σT is the Thomson cross section and ξ ≡ (1− 4m2
ec

4/s)
1
2 , with me the mass of the electron and

s = 2m2
ec

4(1− cos θ). The interaction rate will be given by

RPP (z, E) =
c

8E2

∫ ǫmax

ǫmin

dǫ
n(ǫ, z)

ǫ2

∫ smax

smin

σPP (s) s ds, (3.56)

with smin = 4m2
ec

4 and smax = 4Eǫ.
In inverse Compton scattering (e + γEBR −→ e + γ), an electron (or positron) interacts with a

background photon, accelerating it. The total cross section of ICS is given by the Klein-Nishina formula:

σICS(E, θ) =
3

8
σT
m2

ec
4

sξ

[
2

ξ(1 + ξ)
(2 + 2ξ − ξ2 − 2ξ3)− 1

ξ2
(2− 3ξ2 − ξ3) log

1 + ξ

1− ξ

]
, (3.57)

where ξ ≡ (s−m2
ec

4)/(s+m2
ec

4) is the velocity of the outgoing electron in the center of mass frame, in
speed of light units. It is worth noticing that the process has no threshold. Such a formula is valid for
s > 2m2

ec
4 + 2mec

2ǫmax, whereas below this threshold σICS = σT . The corresponding interaction rate
is given by

RICS(z, E) =
c

8ξE2

∫ ǫmax

ǫmin

dǫ
n(ǫ, z)

ǫ2

∫ smax

smin

σICS(s)(s−m2
ec

4) ds, (3.58)

with s = 2Eǫ(1− ξ cos θ) +m2
ec

4 and smax,min = 2Eǫ(1± ξ) +m2
ec

4.
The total cross section for triplet pair production (e+ γEBR −→ e+ e− + e+) is given by

σTPP (E, θ) =
3α

8π
σT

[
28

9
log
( s

m2c4

)
− 218

27

]
, (3.59)

if s >> m2
ec

4. The energy threshold of the process is smin = 9m2
ec

4, whereas the maximum center of
mass energy, obtained in head on collisions, is given by smax = 2m2

ec
4 + 2mec

2ǫmax(1 + ξ), with an
3By noticing that s = m2c4 + 2mc2ǫ′ in rest frame of the particle, and that ds = 2mc2dǫ′, the analytical expression

previously adopted in the case of nuclei is recovered.
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Figure 3.16: Mean free path λ at z = 0 as a function of the energy of the cosmic ray in the observer rest frame. The
contributions due to different processes in CMB, CIOB and CRB are shown separately. The total interaction
length λtot (solid line) is shown in the case of pair production by photon (left panel), and triple pair production
(TPP) and inverse Compton scattering (ICS) by e−/e+ (right panel).

interaction rate whose analytical expression is the same as in Eq. (3.58). However, the TPP process has
inelasticity κ(E) ≃ 1.768(s/m2

ec
4)−3/4 for s >> m2

ec
4: although the total cross section for TPP on CMB

photons becomes comparable to the ICS cross section already around 1017 eV, the energy attenuation
is not important up to ≈ 1022 eV because κ < 10−3. Moreover, TPP is dominated over by synchrotron
cooling, and therefore negligible, if the electrons propagate in a magnetic field of r.m.s. strength larger
than 10−3 nG [40].

For a detailed description of processes discussed in this section, as well as other important (but less
relevant) processes for the development of the electromagnetic cascade, we refer to Ref. [188] and Refs.
therein.

In Fig. 3.16 we show the interaction length4 λ at z = 0, as a function of the energy E of the cosmic ray
in the observer rest frame, in the case of photon (left panel) and e−/e+ (right panel). The contributions
due to all processes discussed so far, in CMB, CIOB and CRB, are also shown separately. In the case
of photon, the production of pairs is the dominant process: the figure shows that below 1014 eV the
relevant background radiation is the CIOB, with an interaction length ranging from a few Mpc to almost
1 Gpc at TeV energy. For energies up to tens of EeV the CMB is the only relevant background radiation,
with an interaction length smaller than 1 Mpc and, in particular, of the order of tens kpc at PeV energy.
At higher energy, above 100 EeV, the CRB is the only background radiation relevant for energy loss,
with interaction length of the order of a few Mpc. In practice, HE photons produced by extragalactic
sources can not be observed at Earth, in the energy range between hundreds TeV and ≈ 0.1 EeV. Closest
extragalactic sources of UHE photon can be still observed, provided that their distance is within a few
tens of Mpc and the energy of photons is larger than ≈ 1 EeV.

In the case of electrons and positrons, the interaction length is very small for any value of the energy,
ranging from ≈ 1 kpc at TeV energy to at most ≈ 100 kpc at higher energies. The relevant energy-loss
process are the inverse Compton scattering on CMB up to ≈ 0.1 EeV and the triple pair production on
CMB at higher energy.

4We are in debt with M. Settimo for having provided the numerical estimation of mean free paths shown in the figure.
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Figure 3.17: Modification factor for the power-law generation spectra with injection index 2.7 in comparison with the
some observational data, Hires I-II (left) and Yakutsk (right), for non-evolutionary models. Curve η = 1
corresponds to adiabatic energy losses, curves ηee to adiabatic and pair production energy losses and curves
ηtotal to total energy losses [189].
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Figure 3.18: The spectra and fluxes measured by Yakutsk, AGASA, HiRes and Auger before (left panel) and after (right
panel) energy calibration due to the dip interpretation [190].

3.5 Impact of propagation on the spectrum of UHECR

The energy loss process discussed in this chapter should produce observable features in the spectrum of
UHECR: in this section we will treat separately the case of nuclei and the case of neutrinos and γ-rays.

3.5.1 Protons and heavy nuclei

If UHECR are assumed to be protons, an interesting feature called “dip” is expected to be observed if the
general assumptions on the transition from galactic to extragalactic cosmic rays are revised [191–193].
The dip should emerge in the diffuse spectrum of UHE protons in the energy range between 1018 eV
and 4× 1019 eV, and it is caused by electron-positron pair production on CMB photons.

If we define the modification factor η as the ratio between the full spectrum J(E), incorporating
energy losses, and the unmodified spectrum J∗(E), where only adiabatic loss is considered. The pre-
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Figure 3.19: Propagated spectra, E3Φ(E), for pure proton models (left) and mixed composition models (right) compared
with HiRes monocular data. Different source evolution models are indicated by the labels [185].

dicted modification factor for protons is shown in Fig. 3.17 in comparison with modification factors of
some observational data, namely Hires I-II (left panel) and Yakutsk (right panel): the agreement is
evident. For heavy nuclei the dip is quite different and does not agree with such data, although a mixed
composition with a small fraction of heavier nuclei is still allowed.

The predicted shape of the dip is robust, being valid for the rectilinear and diffusive propagation, for
different discretenesses in the source distribution, for local source over-density and deficit and for source
inhomogeneities on scales smaller than 100 Mpc. By definition η(E) ≤ 1, whereas for E < 1018 eV it
exceeds 1, a clear indication of an additional component to the flux, of galactic origin. Being thought
of as purely galactic feature, the position of the second knee in the dip analysis appears as direct
consequence of extragalactic proton energy losses [191]. By adopting the dip prescription, the fluxes of
UHECR observed by different experiments can be recalibrated: in Fig. 3.18 such experimental spectra
are shown before (left panel) and after (right panel) such a recalibration, and a nice overall agreement
emerges [189, 190].

In Fig. 3.19 the propagated spectra are shown for pure proton models (left panel) and mixed com-
position models (right panel), for different source evolution models and injection indices, in comparison
with the HiRes monocular data. The corresponding galactic components are inferred from the overall
spectrum by subtracting the extragalactic cosmic ray component, in the case of the uniform and SFR
source evolution models [185]. The effect of source evolution is stronger at lower energy in both cases.
Moreover, it is worth noticing that the two cases infer very different regions for the galactic component:
in the case of protons such a component sharply decreases, becoming negligible around 1017.6−1018.1 eV,
depending on the evolution model, whereas in the case of mixed composition a smoother decrease is
found, and the inferred component becomes negligible around 1018.4−1018.6 eV. If the dip model is used
to explain such a difference and the composition is light, there should be no transition from the galactic
to extragalactic component around 1018.5 eV.

3.5.2 Neutrinos and γ−rays

In Fig. 3.20 the spectra of nuclei, neutrinos and photons expected at Earth recently obtained by Decerprit
and Allard from detailed simulations [194], are shown.

The cosmic ray, neutrino (summed over all flavors) and photon spectra are shown in the left panel of
Fig. 3.20 assuming pure proton, pure helium and pure iron composition at the source, a source spectral
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Figure 3.20: Spectra of nuclei, neutrinos and photons expected at Earth recently obtained by Decerprit and Allard from
detailed simulations [194]. Left: Fluxes obtained by assuming different pure compositions at the source.
Right: Fluxes for the pure proton (blue) and the pure iron (red) cases, assuming sources located at various
distances (D = 5, 10, 20, 100, 200, 500, 1000 Mpc). See the text for further details.

Figure 3.21: Spectra of neutrinos and photons expected at Earth for a point source of primary nuclei, placed at z = 0.01
(≃ 40 Mpc), recently obtained by Ahlers and Salvado from simulations [178] based on an analytical approach
[174]. The solid line shows the total flux of γ-rays and the dashed line the cosmogenic neutrino flux. The
dotted lines show the contribution to γ-rays from Bethe-Heitler loss alone omitting the contribution from
contribution from photo-pion interactions. See the text for further details.

index 2.3 and a maximum energy at the source Emax(Z) = Z×1020.5 eV. The same cosmic ray luminosity
between 1016 eV and Emax(Z) is assumed. The contribution of the main fragment is shown in thin dashed
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Figure 3.22: Proton energy as a function of propagation distance through the CMB for three different values of injection
energy Ei, namely 1020, 1021 and 1022 eV, obtained with our simulator.

lines. With no regards for the primary composition, the resulting photon spectra appear very similar,
although in the case of heavy nuclei, most of the photon flux is caused by secondary nucleons.

The cosmogenic neutrinos (dashed lines) and photons (solid lines) fluxes for the pure proton (blue)
and the pure iron (red) cases, assuming sources located at various distances (D = 5, 10, 20, 100, 200, 500,
1000 Mpc) and luminosity of 1047× (D/1000 Mpc)2 erg s−1, between 1017 eV and Emax = Z×1020.5 eV,
are shown in the right panel of Fig. 3.20.

The spectra of neutrinos and photons expected at Earth for a point source of primary nuclei, placed
at z = 0.01 (≃ 40 Mpc), recently obtained by Ahlers and Salvado from simulations [178] based on an
analytical approach [174], are shown in Fig. 3.21. The injection spectrum of primary nuclei has been
assumed to be of the form QA(E) ∝ E−γ exp(−E/Emax), where the values of γ and Emax are specified in
the plots. The solid line shows the total flux of γ-rays and the dashed line the cosmogenic neutrino flux.
The dotted lines show the contribution to γ-rays from Bethe-Heitler loss alone omitting the contribution
from contribution from photo-pion interactions.

We refer to the original papers [178, 194] for more information about such results, their interpretation
and their comparison with experimental observation.

3.6 Investigating the GZK horizon of UHE protons

The solution of Eq. (3.28) is the degraded energy Ef of the proton with initial energy Ei, after the
propagation from the source at distance D (or at redshift z) to the Earth (z = 0). In Fig. 3.22 we
show the proton energy as a function of propagation distance through the CMB for three different
values of injection energy Ei, ranging from 1020 to 1022 eV. Results from HERMES show that a proton
propagating for at least 200 Mpc, will be detected with energy Ef ≤ 60× 1018 eV, with no regards if its
initial energy is larger, for instance, than 1022 eV. Such results are in perfect agreement with literature
[195].

Under the assumption of a power-law injection spectrum with spectral index s, we have

ωGZK(z;Ef ) =
s− 1

E−s+1
f

∫ ∞

Ei(z;Ef)
E−sdE, (3.60)

while assuming equal intrinsic luminosity and homogenous distribution of sources (i.e. their number at
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Figure 3.23: Relative difference between GZK horizons estimated with and without EMF. Two values of the r.m.s. strength
of the EMF are considered, namely 1 and 10 nG, as well as two different injection index, namely 2.4 (left panel)
and 2.7 (right panel). Error bars indicates only the statistical uncertainty on δR/R. Lines corresponding to
±5% bands and δR/R = 0 are shown for reference.

redshift z is proportional to z2), we obtain the function

ΩGZK(z;Ef ) =

∫∞
z dz′

∫∞
Ei(z′;Ef)E

−sdE
∫∞
0 dz′

∫∞
Ei(z′;Ef)E

−sdE
, (3.61)

for the probability of detecting at z = 0 a proton emitted within distance z and with E ≥ Ef [196]. The
energy Ei (z;Ef ) of the injected proton is estimated by evolving Eq. (3.28) backward in time [171, 197].
The GZK horizon R is the distance such that 1− ΩGZK(R,Ef ) = 0.9.

3.6.1 Influence of extragalactic magnetic field

It is worthwhile discussing in this section the impact of the extragalactic magnetic field (EMF) on the
probability ΩGZK(z;Ef ). Unfortunately, a direct or indirect measurement of the EMF is still missing,
and only bounds to its r.m.s. strength Brms have been estimated. However, bounds on the EMF strength
also depend on the field correlation length ℓ, which is also unknown.

Upper limits of the order of 10−9 G (1 nG) on the intensity of the EMF have been measured through i)
the Faraday rotation in the polarized radio emission from distant quasars [198] and ii) the characteristic
distortions that it induced on the spectrum and the polarization of CMB radiation [199]. More recent
analyses, based on the recent WMAP measurements [200], provide the more stringent upper bound of
≈2 nG on the present value of the cosmic magnetic field of primordial origin, more than one order of
magnitude smaller than previous estimates [201].

Intergalactic magnetic field might also be structured inside and around clusters or groups of galaxies,
with filaments extending over few Mpc, as shown, for instance, in recent detailed simulations [107]. The
topology of such a structured magnetic field would have a non-negligible impact on the trajectories of
UHE protons and, of course, on the average deflections they experience in the case of EMF with regular
structures above 200 kpc [202]. Additionally, longitude-averaged X-ray emission observed with ROSAT
near 0.65 keV and 0.85 keV towards the center of the Galaxy, are in agreement with a Galactic wind
thermally-driven by cosmic rays and hot gas [203, 204]. In our study, we can neglect the effect of such
a magnetic wind, because it is expected to have a non-negligible impact for protons below 60 EeV or
heavier nuclei. Moreover, we neglect the case of a structured EMF because of the lack of direct or
indirect measurements about its structure, and we reserve to consider it in a future work.
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Here, we consider only the case of a turbulent EMF characterized by Brms and ℓ. In this case,
protons propagate randomly following a brownian trajectory. The average deflection they are subjected
to can be parameterized by

θ(E,D) ≃ 0.8◦
(

E

1020 eV

)−1( D

10 Mpc

) 1
2
(

ℓ

1 Mpc

) 1
2
(

Brms

10−9 G

)
, (3.62)

in absence of energy losses [40], with D ≈ zc/H0 for distances considered in the present study. Such a
deflection implies an average time delay

τ(E,D) ≃ 1.5

(
E

1020 eV

)−2( D

10 Mpc

)2( ℓ

1 Mpc

)(
Brms

10−9 G

)2

kyr, (3.63)

relative to the rectilinear propagation with the speed of light. Let us consider a propagation distance
equal to the GZK radius, i.e. D = R: the difference between the trajectory corresponding to the
propagation in absence of magnetic field and the brownian trajectory of the proton propagating in the
EMF is δR ≈ cτ , leading to

δR

R
≃ 0.5× 10−4

(
E

1020 eV

)−2( R

10 Mpc

)(
ℓ

1 Mpc

)(
Brms

10−9 G

)2

, (3.64)

where we have omitted to explicitly report the dependence of R and δR on the energy E, for simplicity.
We estimate the bound to Brms

√
ℓ in order to have a negligible impact on the GZK horizon, i.e. δR/R <

5%, by
√

ℓ

1 Mpc
Brms

10−9 G
< 10

3
2

(
E

1020 eV

)(
R

10 Mpc

)− 1
2

. (3.65)

For a UHE proton with E = 60 EeV the GZK horizon is R ≈ 180 Mpc: if we consider the propagation
in an EMF characterized by ℓ = 1 Mpc, any r.m.s. strength Brms < 4.5 nG will not significantly affect
the horizon. For a proton with higher energy as 95 EeV, such a bound reads Brms < 11.5 nG, i.e. even
more intense EMFs have a negligible impact on the result. For instance, the estimated upper bounds
are still conservative even if larger correlation length as 16 Mpc are considered, reducing to ≈1 nG and
≈3 nG, respectively.

We have investigated the validity of such an argument by performing several Monte Carlo realizations
of protons propagating in the Universe, with and without EMF. For such a purpose, the well known
propagation software CRPropa v1.4 [205] has been adopted: two different values of the r.m.s. strength
of the EMF, namely 1 and 10 nG, as well as two different values of the injection index, namely 2.4 and
2.7, has been considered for this study. In any case, the correlation length has been fixed to ℓ = 1 Mpc.
The main advantage in using CRPropa is that relevant energy-loss processes are considered during the
propagation in a turbulent magnetic field: in this case we can quantify the average relative deviation
δR/R in a more realistic scenario with respect to Eq. (3.64), where energy loss has been switched off to
estimate θ(E,D) and τ(E,D). In Fig. 3.23 we show the result of such a study. It is evident that the
the injection index has a negligible impact on the relative deviation δR/R. For both Brms ≃ 1 nG and
Brms ≃ 10 nG, the resulting relative deviation is within 5% at any energy, in agreement with expectation.
It is worthwhile noticing that in any case, the value of δR/R is non-positive, i.e. the GZK horizon for
the propagation in an EMF is smaller than the horizon for the propagation without magnetic field, as
expected. Moreover, it is relevant to remark that for the weak EMF (1 nG) δR/R ≈ 0, whereas for the
strong EMF (10 nG) δR/R approaches zero above 90 EeV: the EMF has no impact on the GZK horizon
of UHE protons.
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From such a result, we can also deduce that above 60 EeV the effect of energy loss on the propagation
in an EMF is negligible: hence, the parameterizations given by Eq. (3.62) and (3.63), although they have
been obtained by considering no energy losses, can be safely used in the scenarios previously described.

Such a result is rather conservative: in fact, the most up-to-date bounds on the correlation length
and the r.m.s. strength of the EMF are much lower of the values considered in this study [206].

3.6.2 Influence of cosmology

In Fig. 3.24 we show the weight function ΩGZK(z;Ef ) for some values of the energy threshold Ef = Ethr,
as a function of the distance. By assuming the most recent values of ΛCDM model parameters (Ωb =
0.0456, Ωc = 0.227, ΩΛ = 0.728 and H0 = 70.4 km/s−1/Mpc) [200], the value of the injection index
is fixed (s = 2.7) while the energy threshold Ethr is varied (left panel): as expected, the GZK horizon
decreases by increasing the energy threshold. In the right panel of Fig. 3.24, we show the weight for two
fixed values of the energy threshold, Ethr = 50 EeV and Ethr = 100 EeV, while the injection index is
varied: although differences among curves corresponding to different values of the injection index are
not exaggerated as in the previous case, we find that they increase by decreasing the energy threshold
Ethr.

Cosmological parameters as the density of matter, the density of dark energy and the Hubble param-
eter at the present time, should influence the function Ei (z;Ef ), discussed at the end of the previous
section, and of consequence the probability ΩGZK(z;Ef ). From Eq. (3.28) it is clear that the factor
involving such parameters is only −dt/dz.

In a flat universe, we consider the deceleration parameter q0 constrained by ΩM +ΩΛ = 1, whereas
in a curved universe, we consider the curvature parameter Ωκ constrained by Ωκ = 1 − ΩM − ΩΛ. By
varying two among the three parameters, we investigate different models of universes. In Tab. 3.2 and
Tab. 3.3 the values of the parameters are summarized for flat and closed models, respectively, that will
be adopted in the successive analysis.

For small values of z, corresponding to the nearby universe, it is not expected a significant difference
among cosmological models. At the highest energies, above 50 EeV, we have found that photomeson
production dominates energy losses, thus only the term −βπ(z, E)×dt/dz is important. By considering
two extreme scenarios, as matter-dominated (ΩM = 1;ΩΛ = 0) or energy-dominated (ΩM = 0;ΩΛ = 1)
universes, the energy-loss term is modified at most by 10%.

Figure 3.24: Surviving probability, defined by Equation (3.61), due to cosmological effects described in the text, in the
case of a proton and assuming ΛCDM model parameters. Left panel: the value of the injection index is fixed
(s = 2.7) while the energy threshold Ef is varied; Right panel: the value of the energy threshold Ef is fixed
(two cases, E = 50 EeV and E = 100 EeV) while the injection index is varied.
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Name ΩM ΩΛ q0 Description
ΛCDM 0.272 0.728 -0.592 Standard cosmological model
EdS 1 0 0.5 Einstein-de Sitter model

(matter-dominated)
AFU1 0 1 -1 Decelerating flat Universe

(vacuum energy-dominated)
AFU2 1

3
2
3 -0.5 Decelerating flat Universe

Table 3.2: Models for flat universes considered in this study and corresponding to different values of the density of matter,
the density of dark energy and the deceleration parameter.

Name ΩM ΩΛ Ωκ Description
FLO1 0.27 0.93 -0.2 Friedmann-Lamaitre open
FLO2 1.23 -0.5
FLO3 1.43 -0.7
FLC1 0.27 0.53 0.2 Friedmann-Lamaitre closed
FLC2 0.23 0.5
FLC3 0.03 0.7

Table 3.3: Models for curved universes.

In Fig. 3.25 we show the weight function ΩGZK(z;Ef ) as a function of the distance, for both flat and
curved models listed in Tab. 3.2 and 3.3, respectively. With no regards for the value of the injection
index s, weights corresponding to very different cosmological models do not differ significantly below the
GZK horizon, which is not influenced by the choice of a particular cosmology. The difference becomes
significant toward higher redshifts where, however, the surviving probability for a proton is very small.

Figure 3.25: Surviving probability, defined by Equation (3.61), due to cosmological effects described in the text, in the
case of a proton with Ethr = 60 EeV and assuming different models of universe, for two values of the injection
index (s = 2.0 and s = 2.7). Left panel: flat models described in Tab. 3.2 are considered; Right panel: curved
models described in Tab. 3.3 are considered.

Indeed, in Fig. 3.26 the same weight function is shown by assuming ΛCDM model values for density
parameters [200], protons with energy threshold Ethr = 60 EeV and different values of the Hubble
constant H0 at the present time. For simplicity, in the following we will not explicitly specify the unit
of H0, that should be considered km s−1 Mpc−1. Left panel shows the case for s = 2.0, whereas right
panel shows the case for s = 2.7. It is evident that the value of the Hubble parameter significantly
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Figure 3.26: Surviving probability, as in Fig. 3.25, assuming ΛCDM model values for density parameters and protons with
energy threshold Ethr = 60 EeV, for two values of the injection index (s = 2.0 and s = 2.7). Different values
of the Hubble parameter H0 (in km/s−1/Mpc units) at the present time are considered. The inset in the right
panel shows the relative difference between curves corresponding to H+

0 = 70.4+ 3σ and H−
0 = 70.4− 3σ, as

a function of the distance.

Figure 3.27: Relative difference between curves corresponding to probability functions for H+
0 and H−

0 in Fig. 3.26, for
different values of energy threshold in the case of s = 2.0 (left panel) and s = 2.7 (right panel).

affects the weight function, as already suggested by previous studies [168, 207]. If the 3σ uncertainty
in the value (H0 = 70.4) obtained from the ΛCDM model is taken into account [200], as shown in both
panels of Fig. 3.26, we find that differences between curves corresponding to 70.4 + 3σ and 70.4 − 3σ
are negligible (≈ 5%) only below 75 Mpc, as shown in the inset of the right panel, for s = 2.7. From
the lower bound curve (H−

0 = 70.4 − 3σ) the estimated GZK horizon is about 166 Mpc, whereas for
the upper bound curve (H+

0 = 70.4 + 3σ) it is about 186 Mpc, with a relative difference of about 11%.
A relative difference of about 100% between the corresponding weight functions is reached around 160
Mpc, tending to increase with the distance.

In Fig. 3.27 we show the relative differences between curves corresponding to weight functions for
H+

0 and H−
0 , by varying the energy threshold and the injection index, s = 2.0 (left panel) and s = 2.7

(right panel). By increasing the energy threshold the relative difference increases, although it remains
smaller than 15% below the GZK horizon. All significant differences are found to be above the GZK
horizon, where only 10% of protons are expected to be produced. In the last chapter we will discuss
two simple applications of the arguments discussed so far, in order to show how current and future
experiments could probe the value of the Hubble parameter.
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3.6.3 Conclusion

The GZK effect plays a fundamental role in the search of sources of UHECRs. Here, we have investigated
the influence of cosmology on the GZK horizon of extragalactic UHE protons, with energy ranging from
50 to 100 EeV. By considering very different models of universe, from flat to curved ones, we have shown
that significant differences among cosmological models appear to be important above the GZK horizon,
where the surviving probability for the protons is very small. Moreover, we have investigated the impact
of uncertainty in the Hubble parameter at the present time, according to the ΛCDM model of Universe
and to the experimental constraints obtained from recent WMAP observations. Our results suggest the
existence of non-negligible differences between the estimated values of the GZK horizon in universes with
Hubble parameter H0 = 70.4 + 3σ and H0 = 70.4 − 3σ, respectively. However, our numerical results
show that such differences should have a small impact on studies involving distances below 250 Mpc, as
for instance the recent correlation analyses between observed data and the distribution of nearby active
galactic nuclei (AGN) reported by the Pierre Auger and the HiRes collaborations [88, 89, 208, 209].

3.7 Comparison of HERMES with other propagation codes

In this section, we show the comparison between results obtained with HERMES and those from other
propagation codes available in the UHECR community. Four representative tests are reported: in all
cases magnetic fields have been switched off.

For the first check of consistency, we consider a single source at redshift z = 0.1 (≈ 42 Mpc) emitting
protons with a hard power-law injection, whose spectral index is 1.4 and the maximum energy achievable
is 1020.5 eV. The resulting flux at Earth is shown in Fig. 3.28, where we compare our result with that
one obtained by using CRPropa v1.4 [205], a Monte Carlo simulator designed for the propagation of
protons in a magnetized Universe. The result is rather encouraging: the energy spectrum simulated
with HERMES, here multiplied by the factor E1.4, nicely reproduces that simulated with CRPropa
over (almost) two order of magnitude, with the expected dip and bump features. The differences at the
highest energy are just amplified by the multiplicative factor, the unmodified spectra being in excellent
agreement within the corresponding statistical uncertainty.

Figure 3.28: Simulated energy spectrum, multiplied by the factor E1.4, observed at Earth. The comparison between
HERMES and CRPropa v1.4 is shown.

In the second check of consistency, we investigate the surviving probability of protons, i.e. the
probability that a proton produced by a sources at distance D could reach the Earth with an energy
above a given threshold. We consider an homogenous distribution of equal-intrinsic-luminosity sources
in the nearby Universe, up to ≈ 300 Mpc: each source emits protons following a power-law injection
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spectrum with spectral index 2.4 and energy cutoff 1021 eV. Hence, we estimate the attenuation factor
defined by Eq. (3.60) for different energy threshold Ethr at Earth, ranging from 60 EeV to 100 EeV. The
result is shown in Fig. 3.29, where a comparison between HERMES, CRPropa v1.4 and the simulations
kindly provided by D. Allard, adopting his own Monte Carlo propagator, are reported. The resulting
curves are in very nice agreement among each other, putting in evidence the goodness of our simulator.

Figure 3.29: Surviving probability of protons (see Eq. 3.60) produced by an homogenous distribution of sources within
300 Mpc, as a function of the propagation distance and for different energy threshold Ethr at Earth. A
power-law injection with energy cutoff 1021 eV and spectral index 2.4 is used. We show the result of our
simulations performed with HERMES (solid line), compared to those obtained with CRPropa v1.4 (dashed
line) and by D. Allard (dotted line).

In the previous tests we have only considered the comparison against other pure Monte Carlo propa-
gators. In the third test we compare the same surviving probability, against a propagator which adopts
the continuous energy loss (CEL) approximation for both pair and photo-pion production. We con-
sider the same simulation setup of the second test, but we focus only on results obtained for an energy
threshold of 60 EeV. In the left panel of Fig. 3.30 we show the resulting surviving probability, obtained
by HERMES, CRPropa v1.4 and Allard, against the curve kindly provided by S. Mollerach, obtained
by adopting the CEL approximation.

Figure 3.30: Surviving probability of protons, under the same conditions of Fig. 3.29. The particular case of Ethr = 60 EeV
(1019.78 eV) is considered. The comparison between our simulator, other Monte Carlo propagators and the
CEL approximation is shown for the surviving probability (left panel) and the surviving flux (right panel).
See the text for further information.

It is evident that in such a second case, the surviving probability is overestimated up to ≈ 220 Mpc
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and underestimated for higher distances. Such a behavior is due to the stochasticity of the photo-pion
production, which is reflected in the probability of interaction between protons and photons of the EBR.
The CEL approximates such an interaction as a continuous process, constraining the proton to interact
at each propagation step. The result of such approximation is that particles produced by distant sources
interact more than what is really expected, causing a steep decrease in the surviving probability. In
the right panel of Fig. 3.30 we show the corresponding surviving flux, defined by Eq. (3.61): differences
between propagators are reduced, and the GZK horizon estimated by each simulator, corresponding to
the distance R such that ΩGZK(R) = 0.1, is almost the same in each case.

The last check of consistency reported in this section deals with the estimation of the GZK horizon
for both protons and iron nuclei, as a function of the energy threshold at Earth. For such a test, we
consider three new propagators, recently published or ready for publication. In particular, we consider5:

• PARSEC: a fast Monte Carlo code simulating the 3D propagation of protons in a magnetized
Universe; it makes use of parameterized probabilities and it is based on CEL approximation [210];

• SimProp: a fast Monte Carlo code simulating the 1D propagation of nuclei [211], where protons
are propagated by making use of the CEL approximation;

• CRPropa v2.0β: a Monte Carlo code simulating the 3D propagation of nuclei in a magnetized
Universe [212].

In Fig. 3.31 we show the GZK horizon estimated in the case of protons (left panel) and iron nuclei
(right panel), as a function of the energy threshold at Earth. In the case of protons, propagators of the
same nature provide similar results: in fact, the horizons obtained by HERMES are in good agreement
with those of CRPropa v1.4 over the whole energy range under consideration, whereas PARSEC and
SimProp, adopting a forward propagation under the CEL approximation, are in agreement between
each other but underestimate the horizons. In the case of irons, the estimated horizons are much more
similar, with an overall agreement among all simulators, but some differences at the lowest energy.

Figure 3.31: GZK horizon estimated in the case of protons (left panel) and iron nuclei (right panel), as a function of the
energy threshold at Earth. Results from Harari et al [171] are shown for reference.

5We are in debt with: Dr. T. Winchen for having kindly provided the curve corresponding to PARSEC; the developers
of SimProp for having kindly provided the simulated particles and the macros required to elaborate the output; Prof. G.
Sigl for having recently allowed our access to the source code of CRPropa v2.0β before its official release.
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3.8 Conclusions

In this chapter we have treated the energy-loss processes affecting the propagation of UHECRs in the
Universe. We have presented the cosmological framework included in HERMES and the chosen parame-
terizations for the extragalactic background radiation, including cosmic microwave, infrared/optical and
radio backgrounds. Successively, we have discussed the models and the parameterizations adopted to
simulate the interaction between UHE nuclei and extragalactic background photons, treating with some
detail the creation of secondary particles (including electron/positron pairs, photons and neutrinos) and
their propagation. All the relevant energy-loss processes included in our simulator, as the adiabatic loss
(due to the expansion of the Universe), the pair and photo-pion production, and, in the particular case
of heavy nuclei, the photo-disintegration processes, have been discussed.

Hence, we have estimated interaction and energy-loss lengths for several nuclei, playing a fundamental
role in simulations performed with HERMES, putting in evidence the agreement with known results. We
have also shown the impact of energy-loss processes on the propagation of UHECRs and, in particular,
on the GZK horizon of UHE protons. Finally, we have compared our results with those obtained by
other simulators used in the community, completing the presentation of our original contribution to
the simulation of the propagation of UHECRs. Results put in evidence the goodness of HERMES if
compared to other propagators of the same nature, which employ a forward propagation with a full
Monte Carlo approach.
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What we observe is not nature
itself, but nature exposed to our
method of questioning.

W. Heisenberg

We are what we think. All that
we are arises with our thoughts.
With our thoughts, we make our
world.

Siddharta Gautama
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Chapter 4

Search for UHECR anisotropies: the

multiscale method

In this chapter we will discuss the methods currently used for finding an anisotropy signal in the arrival
direction distribution of UHECRs, as well as the methods adopted for estimating the correlation signal
with a catalog of candidate sources. After a brief overview of hypothesis testing and of common methods
designed for this purpose, we will present our original contribution, i.e. the introduction of a new
multiscale method, designed to perform both catalog-independent and catalog-dependent analyses, based
on information theory and extreme value statistics. In the following, we will show that the multiscale
method is a competing tool for the study of both small and large scale anisotropies and correlations,
providing a great discrimination power even in presence of a strong background contamination and for
quite different astrophysical scenarios.

The part complementary to this chapter, regarding details about probability, statistics and informa-
tion theory, can be found in Appendix B.

4.1 Hypothesis testing

A null hypothesis H0 is a statistical hypothesis that is tested for possible rejection as a true one, i.e. the
observed effect is the result of chance. The hypothesis contrary to the null hypothesis, that observations
are the result of a real effect, is known as the alternative hypothesis H1 [213]. Statistical hypothesis
testing is a statistical procedure to establish the truth of a given hypothesis.

Fisher’s approach for a statistical test requires the formulation of a null hypothesis H0, a test statistics
E , the computation of the so called p-value and the comparison with the (Fisherian) significance α, to
make a decision based on the strength of the evidence.

Neyman-Pearson’s approach requires the formulation of a null hypothesis H0 and of an alternative
hypothesis H1, a test statistics E , the computation of the so called type I and type II errors to make a
decision between the two competing hypotheses.

Bayes’ approach requires the formulation of a null hypothesis H0 and of an alternative hypothesis
H1 (or more), the computation of the prior probability (often unknown, i.e. require assumptions) and
of the posterior probability to make a decision between the two competing hypotheses.

For a statistical test of a null hypothesis H0 through a test statistics E , the Fisher’s p-value of E0
is defined as the chance probability to observe a value of E at least equal to E0, assuming that H0 is
true: P (E0) = p(E ≥ E0|H0). In Fig. 4.1 we show the meaning of the p-value for one-tail (left panel) and
two-tail (right panel) tests. If α is the required (Fisherian) significance for the test, the null hypothesis
is rejected if P (E0) ≤ α and accepted otherwise.
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In the non-Fisherian approaches, hypothesis testing can not be performed by using a single number,
namely the p-value, because it only quantifies the amount of our “surprise” of how unusual are the
data when compared to the null models. In principle, p-values should be not able to capture both the
long-run outcomes of an experiment and the evidencial meaning of a single result.

Figure 4.1: P-value for one-tail (left) and two-tail (right) tests.

The best way to estimate p-values is by mean of Montecarlo simulations. Let {xn} be a data
sample of size n: in practical applications a large number of random realizations {Xn}, satisfying the
null hypothesis H0, is used to estimate p-values for data. For instance, if N is the total number of
Montecarlo simulations, the p-value of an autocorrelation function1 (ACF) w(Θ) at some angular scale
Θ0 is given by

P [w(Θ0)] =
#
[
wMC(Θ0) ≥ w(Θ0)

]

N
,

i.e. the fraction of simulations with an ACF greater or equal than that of the data at the angular
scale Θ0. However, in practical analyses there is often an additional lack of a priori information about
the scale of autocorrelation of a data set, i.e. the value of Θ0 is not known before performing the
statistical test (introducing further ignorance). In such cases, we are interested in the angular scale Θ⋆

that minimizes the chance probability. The price to pay for such a priori ignorance is an additional
scan over the whole parameter space S, the angular scale Θ in this example. Such an approach defines
a penalization procedure due to the parameter Θ.

If P ∗ = min{P [w(Θ)]} is the minimum p-value of the ACF, obtained at the scale Θ⋆ for the data
from the exploratory scan over all values of Θ, and P(Θ) = P

[
w(MC)(Θ)

]
is the p-value to have a null

model with ACF w(MC)(Θ) at the scale Θ ∈ [0, π], the penalized chance probability will be given by

Ppen [w(Θ
⋆)] = P (min{P(Θ)} ≤ P ∗|H0) ,

i.e. the fraction of Montecarlo simulations with a chance probability smaller (higher ACF) than that
obtained from the data after a scanning over all possible angular scales. The generalization to the case
of a parameter space with higher dimensionality is straightforward.

For any test statistics E with continuous density f(E), the distribution of p-values (or penalized
p-values) should be flat if the null hypothesis H0 is true2. Intuitively, such a theorem states that if the
null hypothesis is true, any realization of the data sample is equally likely and, as a consequence, any
value of the test statistics should occur with the same probability.

Although penalized p-values can be small, they do not still represent a significance. In fact, p-values
do not require an alternative hypothesis in order to be estimated: they are an intrinsic feature of data

1The definition of such a function will be given in the next section. For the moment, it can be assumed as a statistical
estimator depending on an angular variable Θ.

2Technically, an equivalent definition of this theorem states that the p-value is a random variable itself, and it is
distributed as U(0, 1), i.e. the uniform distribution in the interval [0, 1], if the null hypothesis H0 is true. We refer to [214]
for the proof.
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[215] and can not be used in hypothesis testing if an a priori (Fisherian) significance has not been fixed.
Because of the absence of an alternative hypothesis, p-values are biased against the null hypothesis.

For this reason two new quantities, the type I and type II errors, have been introduced in hypothesis
testing and decision making processes: they are not features of data but values defined before starting
the test between a null hypothesis H0 and an explicit alternative hypothesis H1 [216]. The Neyman-
Pearsons’s type I error α is the probability to reject H0 when H0 is in fact true, while the Neyman-
Pearsons’s type II error β is the probability to accept H0 when H1 is in fact true:

α = Pr (reject H0|H0)

β = Pr (reject H1|H1)

The significance (or size) of the statistical test is given by α, which defines the confidence level
CL = 1−α of the test. The power of the test statistics E used for the statistical test is defined as 1− β
and it depends, in general, on the sample size. The confidence level is thus the probability to correctly
accept the null hypothesis when it is true, while the power is the probability to correctly accept the
alternative hypothesis when it is true by mean of the test statistics E . It follows that different estimators
can lead to different powers (see Fig. 4.2).

Figure 4.2: Type I and Type II errors.

It is important to point out that a p-values and Fisherian significance are not type I errors: the
former estimates how unlikely is the value of the test statistics if the null hypothesis is known to be
true, while the latter is the frequency of wrong rejection of H0. Thus, for instance, P = 0.01 does
not correspond to α = 1%. We refer to Tab. 4.1 [217] and to [218–220] (and ref. therein) for further
information.

Note. Although p-values are not equivalent to significances, it is still possible to obtain a significance
from a p-value. Sellke et al. [221] presented a rigorous estimation of the lower limit on significance (type
I error) from a p-value, which does not require assumptions on the distribution of the p-value and an
explicit alternative hypothesis (see Appendix B).

For the sake of completeness, an alternative to classical hypothesis testing described so far, is the
Bayesian decision making process, based on Bayes factors (see Appendix B for a brief treatment of this
argument).
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P-value α-level

Fisherian significance level Neyman-Pearson significance level
Significance test Hypothesis test
Evidence against H0 Erroneous rejection of H0

Inductive: from particular to general Deductive: from general to particular
Inductive inference: interpreting strength of evidence Inductive: making decisions
Data-based random variable Pre-assigned fixed value
Property of data Property of test
Short run: applies to any single study Long run: applies only to ongoing repetitions

of original study
Hypothetical infinite population Clearly defined population

Table 4.1: Main differences between p-value and α−level approaches [217].

4.2 Review of anisotropy and correlation estimators

The measure of clustering is of fundamental importance in the physics of UHECRs, because it should
shed light on the possibility of multi-messenger astronomy. In fact, because of Liouville’s theorem,
clustering can not occur because of magnetic fields if it is not an intrinsic feature of the data: thus, the
presence of a clustering signal should be associated with an anisotropic distribution of either sources or
their luminosity, responsible of event excesses in a privileged direction instead of another one. Moreover,
when energy losses are taken into account during the propagation, as it should be, the distribution of
sources with respect to redshift plays a significant role: the existence of the GZK effect should drastically
reduce the number of candidate sources, by restricting their allowed positions to a sphere with radius
of few hundreds Mpc. Observations suggest that the distribution of candidate sources in the nearby
universe, e.g. AGN or rapidly rotating neutron stars, is strongly anisotropic. Hence, in the absence
of clustering, sources are expected to be isotropically distributed and characterized by equally intrinsic
luminosity.

Analytical methods based on probability distributions

Let us start by considering the limit of a continuous and uniform distribution of independent equal-
luminosity sources in the sky, i.e. the case of an isotropic distribution. It is possible to measure the
number of event pairs Np, out of n, separated by an angle between Θ and Θ + dΘ, that under our
assumptions is defined by

dNp

dΘ
=

2

n(n− 1)
sinΘ

∫
dΩ1

∫
dΩ2ω(δ1)ω(δ2)δ

(
Ω̂1 · Ω̂2 − cosΘ

)
, (4.1)

where dΩi = cos δidδidαi, δi and αi denotes declinations and right ascensions, respectively, and δi
spans over the declination observable by the experiment. If n is small, a typical situation in UHECR
experiments, it is convenient to consider the integrated correlation function

Np(< Θ) =

∫ Θ

0

dNp

dΘ′ dΘ
′, (4.2)

to reduce the impact of intervening magnetic fields that may disperse the arrival directions, spreading
the clustering signal over larger angular scales. For a surface detector like AGASA or the SD part of
the Pierre Auger Observatory, the exposure function [222] is given by

ω(δ) ∝ cosφ0 cos δ sinαm + αm sinφ0 sin δ, (4.3)
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where φ0 is the detector latitude (35.8◦ and −35.2◦, for AGASA and Pierre Auger Observatory, respec-
tively) and

αm =





0 ξ > 1
π ξ < −1
cos−1 ξ otherwise

(4.4)

with

ξ ≡ cos θmax − sinφ0 sin δ

cosφ0 cos δ
,

being θmax the maximum zenith angle of the cosmic ray showers considered. Let us consider that the
sky coverage consists of a solid angle Ω and let us divide it into M equal angular bins, each covering
a solid angle w ≃ πΘ2 sr, being 2Θ the aperture of a cone covering the same solid angle. The number
of bins is M ≃ Ω/(πΘ2). If we randomly toss n events into such bins, we have to consider the number
m0 of empty bins, m1 of single hits, m2 of double hits and so on. The probability to obtain a certain
configuration is given by

P ({mi}, n,M) =
1

Mn

M !

m0!m1!m2!...

n!

(0!)m0(1!)m1(2!)m2 ...
, (4.5)

where M ! and n! count the permutations of the bins and the events, respectively, mj ! and j! remove
the overcounting of those bins containing j events, and the events within those bins, respectively. The
normalization factor Mn is the total number of ways to partition n events among M bins [223]. However,
it is worth noticing that variables involved in such a calculation are not independent:

∑

j=1

jmj = n and
∑

j=0

mj =M. (4.6)

By using such constraints, we obtain

P ({mi}, n,M) =
M !

Mn

n!

nn

∏

j=0

(mj)
mj

mj !
, (4.7)

which is not a Poissonian distribution and where

mj =
M

j!

( n
M

)j
. (4.8)

The Poissonian distribution is retrieved in the limit n << M , where mj approximates the mean number
of j−plets. After taking into account the relationship between the number of bins and the angle, it is
straightforward to obtain

mj(Θ) =
n

j!

(
πnΘ2

Ω

)j−1

and
mj(Θ)

mj−1(Θ)
=

n

jM
∼ πnΘ2

jΩ
. (4.9)

If p = 1/M is the probability of any event to fall into any of the independent bin, the average number
of cluster Cm with a given multiplicity m, in a set of n events, is given by [224]

Cm(n) = (1− p)Cm(n− 1) + pCm(n− 1), (4.10)

and thus they follow the binomial distribution

Cm(n) =
n!

m!(n−m)!
pm−1(1− p)n−m. (4.11)
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In Fig. 4.3 we show some representative results. In the left panel we report the probability to obtain
multiplets, estimated by the exact analytical model and the corresponding Poissonian approximation,
as a function of the correlation angle Θ for the Pierre Auger Observatory. In the right panel is shown
the average number of multiplets expected from the binomial model and obtained from simulations
as a function of the number of events n in the data set. Simulations and approximate models only
partially agree on the results. In both cases, any realization of n events adopted for simulations follows
an isotropic distribution on the sky.

Figure 4.3: Isotropic distribution of events in the sky. Left: Inclusive probabilities for various clusters in a 100 event
sample at Pierre Auger Observatory; exact analytical method (solid) and Poissonian approximation (dashed)
are shown [223]. Right: Mean number of pairs (thick solid line), doublets, triplets and quadruplets (thin
solid lines) in simulated realizations of n events randomly distributed with AGASA’s declination-dependent
exposure. The result of the binomial model for doublets (m = 2), triplets (m = 3) and quadruplets (m = 4)
is plotted with dashed lines [224].

We can also be only interested in estimating the clustering due to a single source with flux Φ. If it
is the case, the probability to observe a cluster of multiplicity m follows a Poissonian distribution

Pm(Φ) =
mm

m!
e−m, (4.12)

where m = ΦE is the mean multiplicity, with E the experimental exposure in the direction of the source.
If dns/dF is the number density of sources providing a flux in the interval between Φ and Φ + dΦ, the
average number of multiplets will be

Cm =

∫ ∞

0
dΦ

dns
dΦ

Pm(Φ), (4.13)

whereas the probability of finding k clusters of multiplicity m will be

Pm(k) =
(C

m
)k

k!
e−C

m

. (4.14)

We refer to Refs. [223–226] for further details.

Autocorrelation functions

Many estimators, mainly correlation functions [227–229], have been proposed and widely used to search
for clustering of objects and to measure deviation of angular distributions from isotropy. These methods
apply to angular coordinates of objects as well to distributions of arrival directions of events: in this
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work we will indifferently refer to both as arrival direction distributions of events. In this section we
will describe correlation functions based on Montecarlo simulations instead of analytical predictions.

If n is the number of experimental coordinates on some region S of a spherical surface and r is
the number of coordinates coming from several Monte Carlo realizations of S, the common anisotropy
analysis involves the computation of different estimators: Peebles (or natural), Davis-Peebles, Landy-
Szalay and Hamilton [227–229] angular correlation function, respectively defined by

ω1(Θ) =
r(r − 1)

n(n− 1)

DD(Θ)

RR(Θ)
− 1 (4.15)

ω2(Θ) =
2r

n− 1

DD(Θ)

DR(Θ)
− 1 (4.16)

ω3(Θ) =
r(r − 1)

n(n− 1)

DD(Θ)

RR(Θ)
− r − 1

n

DR(Θ)

RR(Θ)
+ 1 (4.17)

ω4(Θ) =
4nr

(n− 1)(r − 1)

DD(Θ)×RR(Θ)

DR2(Θ)
− 1, (4.18)

where DD is the number of pairs lying in the angular range between Θ and Θ+∆Θ for the experimental
distribution, RR is the same number calculated for Monte Carlo realizations and DR is the cross-pair
counts between experimental and simulated events. By definition (see Ref. [230]) the function ωi(Θ)
(i = 1, 2, 3, 4) is strictly related to the excess on the area dΩ of the pairs number dNpairs over the random
background dNMC:

dNpairs − dNMC =
1

2
nn0ωi(Θ)dΩ,

where n0 is the expected average density of events on S assuming an isotropic distribution. It has been
shown [228] that ω3(Θ) is an unbiased estimator of the autocorrelation function, while ω1(Θ) and ω2(Θ)
are not. An integrated variant of the two-point angular correlation function which reduces the impact
of fluctuations, widely used when only small data sets of points are available [231–235], is defined by
the number of pairs closer than an angle Θ ∈ [0, π]:

wint(Θ) =
n∑

i=1

∑

j<i

H(Θ−Θij), (4.19)

where H is the Heaviside step function and

Θij = arccos (cos θi cos θj + sin θi sin θj cos(φi − φj))

is the angular distance between two directions i and j with coordinates (φ, θ) on the sphere. Such esti-
mators are straightforwardly generalized to the estimation of the cross-correlation between two different
data sets of objects.

For all of test statistics described so far, the parameter space S is spanned by the angle Θ, and
coincides with the interval D1 = [0, π]. If another variable is taken into account, e.g. the energy E of
each event corresponding to a pairwise coordinate, a new space D2 is introduced, and the parameter
space of the ACF wint(Θ, E) will be defined by the bidimensional set S = [0, π]⊗ [0,+∞[.

Recently, new estimators have been introduced to study the anisotropy signature of sky’s arrival
direction distributions: the modified two-point Rayleigh (2pt+) [236], and shape-strength method de-
rived from a principle component analysis of triplets of events (3pt) [237]. Such a test statistics have
been recently applied to both Pierre Auger data and to synthetic maps of events, the latter generated
by sampling the Veron-Cetty & Veron catalog [238] of nearby candidate active galactic nuclei (AGN)
within 75 Mpc (z ≤ 0.018), showing a higher discrimination power than other estimators [239].
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2pt+ method

Two-point ACFs described so far are sensitive to the size of cluster but not to the relative orientation of
the clustering points. The 2pt+ method [236] takes also into account any possible alignment of event
pairs by using two additional variables related to the orientation of each vector connecting event pairs,
as well as their angular distance. Let cosβ the cosine of the vector’s polar angle β, γ the vector’s
azimuthal angle and let us consider an angular binning of 5◦. If P (nβγ,obs

j,k , µ) is the Poisson distribution

with mean µ and nβγ,obs
j,k is the observed number of pairs in the jthkth bin, corresponding to (cosβ, γ),

the pseduo-log-likelihood

Ldata
β,γ =

∑

j,k

lnP (nβγ,obs
j,k , µ)

is built. Analogously, the pseduo-log-likelihood Lα is built for the distribution of cosα, i.e. the angular
distance between event pairs. The p-values pα and pβ,γ are obtained as the fraction of samples such
that Lα ≤ Ldata

α and Lβ,γ ≤ Ldata
β,γ , respectively. Finally, both p-values are combined by mean of the

Fisher’s method to obtain

p† = pαpβ,γ(1− ln pαpβ,γ),

although further corrections are needed through Montecarlo simulations, because of the correlation
between the two log-likelihood tests. For the definition of the log-likelihood and the Fisher’s method,
see Appendix B.

3pt method

Instead of pairs, the 3pt method considers triplets of events [237]. For each event, the arrival direction
is converted into a Cartesian vector ~r and the orientation matrix is calculated. The corresponding three
eigenvalues of the orientation matrix, subjected to the condition τ1 + τ2 + τ3 = 1, are estimated and
ordered. Two new parameters are defined: 1) the strength parameter ζ = ln(τ1/τ3) and 2) the shape
parameter γ = ln [ln(τ1/τ2)/ ln(τ2/τ3)]. For each triplet a pair (ζ, γ) of shape-strength parameters is
obtained and the result is successively binned.

The same procedure is repeated for a large number of Montecarlo realizations and the departure of the
data from isotropy is estimated by building the pseudo-log-likelihood Lζ,γ , where the Poisson distribution
is adopted to estimate the probability to observe nobs counts instead of the isotropic expectation niso,
in each bin of (ζ, γ).

4.3 MAF: a new approach to anisotropy studies

Within the present work, we introduce a new fast and simple method for anisotropy analysis, which
makes use of a multiscale approach and depends on one parameter only, namely the angular scale of
the intrinsic anisotropy. The main advantage of our estimator is the possibility to analytically treat the
results: the analytical approach drastically reduces computation time and makes available the possibility
of applications to very large data sets of objects. We test the method on several simulated isotropic
and anisotropic arrival direction distributions (mock maps) and perform an extensive analysis of its
statistical features under both the null and the alternative hypotheses. However, it is worth remarking
that the scope of applicability of our method is not limited to UHECR physics, and it is valid for any
distribution of angular coordinates of objects.

Let S be a region of a spherical surface and let Pi (φ, θ) (i = 1, 2, ..., n) be a set of points locating
n arrival directions on S, defining a sky. The sky S is partitioned within a grid of N equal-area (and
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almost-equal shape) disjoint boxes Bk (k = 1, 2, ..., N) as described in Ref. [240]. Let Ω be the solid
angle covered by S, whereas each box Bk covers the solid angle

Ωk =
1

N

∫ θmax

θmin

∫ φmax

φmin

d cos θdφ = 2π(1− cosΘ)

where 2Θ is the apex angle of a cone covering the same solid angle: N,Θ and Ω are deeply related
quantities that define a scale.

Let ψk(Θ) be the fraction of points in the data set falling into the box Bk: the function A(Θ)
that quantifies the deviation of data from an isotropic distribution at the scale Θ, is chosen to be the
Kullback-Leibler divergence [241, 242]

A(Θ) = DKL

(
ψ(Θ)||ψ(Θ)

)
=

N∑

k=1

ψk(Θ) log
ψk(Θ)

ψk(Θ)
(4.20)

where ψk(Θ), generally a function of the domain meshing, is the expected fraction of points isotropically
distributed on S falling into the box Bk. The Kullback-Leibler divergence is an information theoretic
measure widely used in hypothesis testing and model selection criteria [243–245], statistical mechanics
[246–248], quantum mechanics [249–252], medical [253] and ecological [254] studies, to cite some of the
most known. This measure quantifies the error in selecting the fraction ψ(Θ) to approximate the fraction
ψ(Θ) and it is strictly connected to maximum likelihood estimation (see Appendix B and notes at the
end of this section). It is straightforward to show that A(Θ) is minimum for an isotropic distribution of
points, or, in general, when ψ(Θ) ∼ ψ(Θ), i.e. if the model is correct.

If Adata(Θ) and Aiso(Θ) refer, respectively, to the data and to an isotropic realization with the same
number of events, we define multiscale autocorrelation function (MAF) the estimator

s(Θ) =
|Adata(Θ)− 〈Aiso(Θ)〉|

σAiso
(Θ)

(4.21)

where 〈Aiso(Θ)〉 and σAiso
(Θ) are the sample mean and the sample standard deviation, respectively, esti-

mated from several isotropic realizations of the data. If H0 denotes the null hypothesis of an underlying
isotropic distribution for the data, the chance probability at the angular scale Θ, properly penalized
because of the scan on Θ, is the probability

p(Θ) = Pr
(
siso(Θ

′) ≥ sdata(Θ)|H0, ∀Θ′ ∈ P
)

(4.22)

obtained from the fraction of null models giving a multiscale autocorrelation, at any angular scale Θ′

in the parameter space P , greater or equal than that of data at the scale Θ. The null hypothesis is
eventually rejected in favor of the alternative H1 = ¬H0 − being ¬ the negation operator − at the
angular scale Θ, with probability 1− p(Θ).

Under the null hypothesis H0, the estimator s(Θ) follows a half-Gaussian distribution, independently
on the value of the angular scale Θ and on the number of events on S, as it will be successively shown
in the text.

4.3.1 Dynamical counting

The simplest definition of the counting algorithm, as shortly described in the previous section, involves
the fixed grid introduced in Ref. [240], where each box only embodies the relative number of events
falling in it. Unfortunately, such a static counting approach could not reveal an existing cluster. For
instance, Fig. 4.4a shows a typical scenario where some points of a given triplet fall into different cells.
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(a) Static counting (b) Dynamical counting

Figure 4.4: A cluster of three points falling into different boxes.

Indeed, the fixed grid may cut a cluster of points within one or more edges, causing a further loss of
information at the angular scale under investigation. To overcome this possible loss of information, we
introduced a type of smoothing of the grid by applying it on the data.

The smoothing, adopted in our study, deals with a new counting procedure for the estimation of the
density ψk(Θ). However, such a density depends on the observatory’s exposure, generally a function
on the celestial sphere depending on both the latitude of the experiment and the maximum zenith of
detection, quantifying the effective time-integrated detection area for the flux of particles from each
observable sky position. The relative exposure ω is the dimensionless function corresponding to the
exposure normalized to its maximum value is given by Eq. 4.3.

Given an angular scale Θ, for each point Pi falling inside a box, we consider a set of 8 new points
lying on a virtual box centered on Pi. Let αi,0 and δi,0 be, respectively, the right ascension and the
declination of the point Pi. We introduce the following notation:

δi,±1 = δi,0 ±
Θ

2
αi,±1 = αi,0 ± g (δi,0)

αi,±2 = αi,0 ± g (δi,+1)

αi,±3 = αi,0 ± g (δi,−1)

where g(·) is a function which depends on declination, that constrains the angular distance between
each of the 8 points and the original one to be Θ

2 . Within this framework, for each Pi(αi,0, δi,0), we have
the following 9 extended points:

• The original point Pi(αi,0, δi,0);

• The up Pi(αi,0, δi,+1) and down Pi(αi,0, δi,−1) points;

• The left Pi(αi,−1, δi,0) and right Pi(αi,1, δi,0) points;

• The up-left Pi(αi,−2, δi,+1) and up-right Pi(αi,2, δi,+1) points;

• The down-left Pi(αi,−3, δi,−1) and down-right Pi(αi,3, δi,−1) points.

We define the function h(δi,j) = ω(δi,j)/ω(δi,0) (j = 0,±1) and introduce the weights

f(δi,j) =
h(δi,j)

3h(δi,−1) + 3 + 3h(δi,+1)
(4.23)
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(a) Clustered points (b) Unclustered points

Figure 4.5: a) Three clustered points: the extended points are mainly concentrated in two adjacent boxes. b) Three
unclustered points: the extended points are mainly distributed on the neighbor cells.

In other words, we weight the angular region around a given direction with the local value of the
exposure. Finally, we follow the procedure previously described by using the weighted distribution of
points instead of the original one, as shown in Fig. 4.4b: thus, the density function ψ(Θ) is defined as
the fraction of extended points, opportunely weighted the by function f(δi,j) defined in Eq. (4.23). Our
numerical studies show that such a dynamical counting approach recovers the correct information on
the amount of clustering in the data.

In fact, the main difference between the static and the dynamical counting lies in the value of the
estimator when the procedure is applied to Monte Carlo realizations of the sky. For instance, let us
consider the Fig. 4.5, where we show a clustered (Fig. 4.5a) and an unclustered (Fig. 4.5b) set of points.
The static counting is not able to recover the differences between the two configurations. Conversely,
if the dynamical counting is applied, the extended points in Fig. 4.5a are concentrated in two adjacent
boxes while in Fig. 4.5b they are distributed on the neighbor cells. This fundamental difference is
reflected in the density function, leading to two different ψ(Θ). Monte Carlo skies producing the same
clustered configuration shown in Fig. 4.5a, and as a consequence the same weight distribution, are not
frequently expected: in this case, the value of s(Θ) should be greater than that one estimated from
the static method. The direct consequence of a greater value of the estimator s(Θ) is a lower chance
probability and the main advantage of using the dynamical counting, instead of the static one, should
be the lowest penalization of s(Θ) only if an anisotropy signal is really present.

In order to illustrate the importance of dynamical counting in the anisotropy signal detection, we
have generated 5000 isotropic and anisotropic skies of 100 events each. In each anisotropic sky, 60%
of events are normally distributed, with dispersion ρ, around 10 random sources and 40% of events are
isotropically distributed. For each angular scale Θ, we have estimated the average value of s(Θ) with
the static and the dynamical counting, separately. Results are shown in Fig. 4.6 for ρ = 5◦ (a), ρ = 10◦

(b), ρ = 20◦ (c) and for the isotropic map (d). As expected, the two counting methods do not show
differences in the estimation of MAF in the case of isotropic skies, resulting in the same flat average
value of s(Θ). Conversely, in the case of the anisotropic skies, the dynamical counting provides a greater
estimation of s(Θ) than the static counting, leading to a smaller estimation of the corresponding chance
probability and improving the signal-to-noise ratio. In the next section we will show how the dynamical
counting is able to correctly recover the most significant clustering scale. For the sake of completeness,
we have generated all mock maps with a full-sky coverage and a uniform exposure.

4.3.2 Interpretation of MAF

Any catalog-independent method provides information about the angular scale Θ⋆ where the signifi-
cance is minimum. In the case of a simple two-point method, such an angular scale is quite difficult
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Figure 4.6: MAF: average s(Θ) (solid line) estimated from 5000 isotropic and anisotropic skies of 100 events each. In
each anisotropic sky, 60% of events are normally distributed, with dispersion ρ, around 10 random sources and
40% of events are isotropically distributed. The dashed line indicates the value of the dispersion adopted to
generate the corresponding mock map: a) 5, b) 10 and c) 20 degrees; d) isotropic map.

Figure 4.7: MAF: average chance probability (solid line), with 68% region around the mean value, estimated from isotropic
and anisotropic skies generated as explained in Fig. 4.6. Dynamical counting is used. The dashed line indicates
the value of the dispersion adopted to generate the corresponding mock map: a) 5, b) 10 and c) 20 degrees;
d) isotropic map.

to interpret and topologically different configurations of events lead to the same significance. In the
case of the modified two-point Rayleigh method, the estimation of the significance includes another
set of parameters, independent from the angular distribution, as described in Ref. [236]: parameters
are sensitive to the orientation of the pairs and therefore to skies showing preferential directions and
filamentary structure of points. It follows that Θ⋆ is the most significant angular size for the mix of
these informations, still linked to the pair configuration. In the case of the shape-strength method, the
estimation of two parameters, namely the shape and strengh, is performed: both can be interpreted,
respectively, in terms of size and elongation of the triangles defined by a triplet of points. It follows that
all information is recovered from the configuration of triplets.

In the specific case of MAF, the angular scale Θ⋆, where the significance is minimum, turns to be
the significative clustering scale: it is the scale at which occurs a greater accumulation of points respect
to that one occuring by chance, with no regard for a particular configuration of points, e.g. doublets
or triplets. To illustrate better the clustering scale detection feature of MAF, we have generated 5000
isotropic and anisotropic skies of 100 events each, as previously described at the end of Section 4.3.1.
Fig. 4.7 shows the average chance probability, with 68% region around the mean value, versus the angular
scale for three values of the dispersion, namely ρ = 5◦ (a), ρ = 10◦ (b), ρ = 20◦ (c), and for the isotropic
map (d). As expected, chance probability is close to one and nearly flat in the case of the isotropic
map, because all clustering scales are equally likely. Conversely, for all anisotropic maps, the average
chance probability gets a minimum around the corresponding value of ρ. Thus, our estimator is able to
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recover the most significant clustering scale. It should be remarked that when the 20◦ dispersion is used,
the angular scale of the minimum is less obvious because of the large fluctuations due to the isotropic
contamination. Finally, it is worth noticing that we have observed that the curve around the value of ρ
gets narrower by increasing the number of events.

4.3.3 Statistical analysis of MAF

In this section, we investigate the statistical features of MAF by inspecting its behavior under both the
null or the alternative hypothesis. In particular, we estimate the significance α (or Type I error), i.e.
the probability to wrongly reject the null hypothesis when it is actually true, and the power 1−β (where
β is known as Type II error), i.e. the probability to accept the alternative hypothesis when it is in fact
true. In the following we will adopt the dynamical counting previously discussed.

Null hypothesis. We generate isotropic maps of 105 skies, by varying the number of events from
20 to 500: for each sky in each map, we estimate the MAF for several values of the angular scale Θ.
Hence, we choose the value of Θ = Θ⋆ where the chance probability is minimum, as the most significant
clustering scale:

p̃(Θ⋆) = argmin
Θ
p(Θ)

properly penalized because of the scan on the parameter Θ, according to the definition in Eq. (4.22).
Indipendently of the number of events in the mock map, we find an excellent flat distribution of probabil-
ities p̃(Θ⋆), shown in Fig. 4.9a for skies of different size, as expected for analyses under the null hypothesis
H0. In other words, MAF is not biased against H0, as required for good statistical estimators.

Because of the definition in Eq. (4.20) and of the central limit theorem, a Gaussian distribution is
expected for the function A(Θ), and of consequence, the half-normal distribution

G1/2[s(Θ)] =
2√

2πσ(Θ)
e
− s2(Θ)

2σ2(Θ) (4.24)

for σ(Θ) = 1, is expected for the estimator s(Θ) defined as in Eq. (4.21), being normalized to zero
mean and unitary variance. In Fig. 4.8 the distributions of the MAF estimator are shown for n = 40
and n = 100 events, for angular scales Θ ranging from 2◦ to 26◦, separately. We find an excellent
agreement between the distribution for Monte Carlo realizations and the expected one. It follows that
the (unpenalized) probability to obtain by chance a value of the MAF, greater or equal than a given

value s0, is just 1− erf
(

s0√
2

)
, being erf the standard error function, independently of the angular scale

Θ.
Although this is an important feature of the MAF estimator, generally the distribution of smax =

max{s(Θ)} is more useful for applications, because of the required penalization due to the scan over the
parameter Θ. Hence, it is important to identify the distribution of the penalized probability p(Θ), if
any. Intriguingly, our numerical studies show that such a distribution exists and it corresponds to one
of the limiting densities in the extreme value theory (see notes at the end of this section). In particular,
the cumulative density of maxima is known as the Gumbel distribution [255, 256]:

G(x) = exp

[
− exp

(
x− µ

σ

)]

where µ and σ are the location and shape parameters, respectively, and the corresponding probability
density is

g(x) =
1

σ
exp

[
−x− µ

σ
− exp

(
x− µ

σ

)]
(4.25)
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Figure 4.8: Distribution of the MAF estimator for n = 40 and n = 100 events, for angular scales Θ ranging from 2◦ to
26◦, separately. Solids lines correspond to the expected half-normal distribution.

Figure 4.9: MAF. a) Distribution of p̃(Θ⋆) for n = 40, 60, 80, 100 and 500 events. b) Distribution of max{s(Θ)} for
n = 40, 60, 80, 100 and 500 events. Solid line correspond to the least-square fit of the Gumbel density with
parameters µ = 1.743± 0.002 and σ = 0.470± 0.002 (χ2/ndf = 1.1× 10−5).

In Fig. 4.9b we show the probability densities of smax for n = 40, 60, 80, 100 and 500 events: inde-
pendently of n, each density is in excellent agreement with the Gumbel distribution of extreme values,
for the parameters µ = 1.743± 0.002 and σ = 0.470± 0.002. Such values correspond to the mean and
to the standard deviation of the distribution, µ̃ ≈ 2.00 and σ̃ ≈ 0.59, respectively (see notes at the end
of this section). It follow that the probability to obtain a maximum value of s(Θ), at any angular scale
Θ, greater or equal than a given value max{s(Θ)} is

p (max{s(Θ)}) = 1− exp

[
− exp

(
max{s(Θ)} − µ

σ

)]
,

providing an analytical expression for the penalized probability defined in Eq. (4.22).

Alternative hypothesis. In order to investigate the behavior of MAF under the alternative hypothesis
of an underlying anisotropic distribution of objects, we have generated anisotropic maps of 104 skies,
by varying the number of events from 20 to 100. In general, the anisotropy of a sky depends on several
factors: for instance, in the case of cosmic rays, it depends on the distribution of sources, on magnetic
fields and on propagation effects as energy loss or the GZK cutoff [40, 257] (and Ref. therein). Thus,
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Experiment φ0 θmax Exp. (m2 s sr) λ #Ev.

Volcano R. 35.15◦N 70◦ 0.2× 1016 1.000 6
Yakutsk 61.60◦N 60◦ 1.8× 1016 0.625 20
H. Park 53.97◦N 74◦ − 1.000 7
AGASA 35.78◦N 45◦ 4.0× 1016 0.750 29
SUGAR 30.43◦S 70◦ 5.3× 1016 0.500 13
Pierre Auger 35.20◦S 60◦ 28.4× 1016 1.200 27

Table 4.2: Surface detectors: positions, maximum zenith angles θmax, exposures, energy shift factors and number of
detected events with rescaled energy E′ ≥ 4.0× 1019 EeV.

a more complicated approach is required for the Monte Carlo realization of the maps. In order to
estimate the power of MAF, we build reasonable anisotropic maps reflecting in part the real-world
scenario, keeping in mind that our purpose is to build an anisotropic set of events for statistical analysis
and not to generate events mimicking real data sets with the best available approximation. We proceed
as follows:

1. Catalog of candidate sources. Although several models for production mechanisms of UHECR are
available [40, 257] (and Ref. therein), [41, 258–264], it is generally accepted that the candidate
sources are extragalactic and trace the distribution of luminous matter on large scales [225]. In
particular, it has been shown that correlation with possible high redshift sources is unlikely [265],
whereas compact sources are favored [266, 267]: the recent result reported by the Pierre Auger
Collaboration experimentally supports the latter claim, showing a high correlation between the
observed data and the distribution of nearby active galactic nuclei (AGN) [88, 208]. For these
reasons, we use the Palermo Swift-BAT hard X-ray catalogue of AGN with known redshift within
200 Mpc (z ≤ 0.047) [268], as the reference catalog of candidate sources providing the most
complete and uniform all-sky hard X-ray survey up to date.

2. Source effects. Events, from each source in the reference catalog, are generated by weighting for
the source flux and for the expected geometrical flux attenuation. Hence, the number of events
coming from a source is proportional to its flux and to the factor z−2: because of the small scales
and the high energy of cosmic rays involved in anisotropy studies (E ≥ 4.0×1019 EeV), we assume
a flat universe with zero cosmological constant (Ω = 1, Λ = 0) and nonevolving source. Indeed, we
naively take into account the possible deflections of the particles, due to the random component of
the magnetic field, by producing arrival directions gaussianly-distributed with dispersion ρ around
the source. It is worth remarking that such a dispersion is strictly related to both the injection
energy and the mass of the particle, as well as other physical quantities [257].

3. Background. We take into account the possibility for a contaminating isotropic background of the
anisotropy signal, by generating a number of events isotropically distributed, corresponding to a
fraction fiso of the whole data set.

4. Detection effects. As previously explained, the number of events detected by a single fully efficient
and full-time operating surface detector, depends on its own relative exposure. In order to take
into account such a detection effect, we generate the events according to the relative exposure of
the single detector. Moreover, for each detector we generate the corresponding number of events
reported in Table 4.2, in order to produce skies mimicking as much as possible real data actually
available.
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Figure 4.10: Relative geometrical exposure of each single detector listed in Table 4.2 (lines and points), and the joint
exposure of all experiments (solid line).

However, for a more realistic distribution of events, several more constraints, in general based on
further assumptions or debated models, are required: the mass of the particle, the injection spectrum
of the source, the intervening magnetic field, to cite some of the most important. In our study of the
MAF discrimination power, we fix ρ = 3◦, as the mean angular deviation of UHECR in the galactic and
extra-galactic magnetic field, and a background fraction fiso = 0.3.

In order to produce a likely map of UHECR, we choose to generate events distributed in the whole
sky, according to the number of events collected by surface detectors in the last decades. In particular,
we consider events with energy E ≥ 4.0 × 1019 EeV and error on the arrival direction smaller than
5◦, as detected at the Sidney University Giant Airshower Recorder (SUGAR) [269], Akeno Giant Air
Shower Array (AGASA) [270], Haverah Park [271], Volcano Ranch (one event from [257] and six events
from [272]), Yakutsk [273], Pierre Auger Observatory [208] up to 2008. However, the fluxes of particles
as measured by those experiments do not agree each other in the absolute fluxes, and a rescaling is
needed [189]. By assuming that the spectrum reported by the HiRes Collaboration [274] corresponds to
the correct energy scale, the rescaling, based on some specific characteristics of the UHECR spectrum,
fixes the energy shift factors λ for the other experiments [189, 232]. Positions, maximum zenith angles
θmax, exposures and energy shift factors are reported in Table 4.2, for each experiment, as well as the
number of detected events with rescaled energy E′ ≥ 4.0 × 1019 EeV (E′ = λE). In Fig. 4.10 the
relative geometrical exposure of each single detector listed in Table 4.2 is shown, as well as the joint
exposure of all experiments. For reference, in Fig. 4.11a the all-sky data set of 102 detected events
with rescaled energy E′ is shown, superimposed on the distribution of AGN within 200 Mpc from the
reference catalog, whereas in Fig. 4.11b we show the mock map of simulated events according to physical
constraints previously described.

In Fig. 4.12 we show the power 1− β vs. the number of events, generated as described above. A sky
is labelled as anisotropic if, for a fixed value of the significance α, the penalized chance probability as
defined in Eq. (4.22) is lesser or equal than α, i.e. if the condition

p̃(Θ⋆) = argmin
Θ
p(Θ) ≤ α

holds for some angular scale Θ⋆. In Fig. 4.12 we show the power for two values of the significance
threshold, namely α = 0.1% and α = 1%, estimated through the analytical approach. For applications,
a power of 90% is generally required: under this threshold the method could fail to detect an existing
anisotropy signal. In the case of the MAF, and for the considered anisotropic mock map, the power
increases with the number of events n and it is able to detect the anisotropic signal for n ≥ 60, with
significance α = 1%. However, by decreasing the significance for the statistical test, the power requires
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(a) UHECR events and candidate sources. (b) Mock map.

Figure 4.11: a) All-sky data set of 102 detected events with rescaled energy E′ ≥ 40 EeV (see the text for further
information) superimposed on the distribution of AGN with known redshift (z < 0.047) from the Palermo
SWIFT-BAT hard X-ray catalogue; b) corresponding mock map generated for the statistical analysis (see
details in the text). Equatorial coordinates are shown.

Figure 4.12: MAF power vs. the number of events sampled from anisotropic mock maps generated as described in the
text, for values of the significance corresponding to α = 0.1% and α = 1%.

a greater number of events to reach the 90% threshold, as expected: our test clearly shows that the
MAF provides an excellent discrimination power for n ≥ 80. Indeed, we verified the agreement between
the analytical and the Monte Carlo estimations of the discrimination power.

4.3.4 Discussion and conclusion

We introduced a new statistical test, based on a multiscale approach, for detecting an anisotropy signal
in the arrival direction distribution of UHECR, that makes use of an information theoretical measure
of similarity, namely the Kullback-Leibler divergence, and of the extreme value theory. Within the
present work we showed that our procedure is suitable for the analysis of both small and large data
sets of events, by applying it on several Monte Carlo realizations of isotropic and anisotropic synthetic
data sets, corresponding to plausible scenarios in the physics of highest energy cosmic rays. In fact, for
small data sets as well as for larger ones, the method is able to recover the information about the most
significant angular scale of clustering in the data, even in presence of strong isotropic contamination.

The advantages of our approach over other methods are multiple. First, the method allows an
analytical description of quantities involved in the estimation of the amount of anisotropy signal in the
data, avoiding thousands of Monte Carlo realizations needed for the penalizing procedure of results
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and drastically reducing the computation time. Second, the method allows the detection of a physical
observable, namely the clustering scale, in the case of a point source. In the case of multiple sources, the
information is about the most significant clustering scale(s), according to source distribution. Third,
the method is unbiased against the null hypothesis and it provides a high discrimination power even in
presence of strong contaminating isotropic background, for both small and large data sets. Although in
this work we referred to UHECR physics for our applications, it is worth remarking that the method is
suitable for the detection of the anisotropy signal in each data set involving a distribution of angular
coordinates on the sphere, and it can be adapted to non-spherical spaces by properly redefining the
dynamical counting algorithm.

4.3.5 Additional information

The Kullback-Leibler divergence.

Let P and Q be two probability distributions, with densities p(x) and q(x), respectively. The
Kullback-Leibler (KL) divergence is a measure quantifying the error in approximating the density p(x)
by means of q(x), and it is defined [241, 242] as

DKL(p||q) =
∫
p(x) log

p(x)

q(x)
dx (4.26)

The KL divergence is non-negative, i.e. DKL(p||q) ≥ 0 with equality if and only if P = Q, and
asymmetric, i.e. DKL(p||q) 6= DKL(q||p). The statistical interpretation of KL divergence is as follows.

Let P̃ the empirical distribution of random outcomes xi (i = 1, 2, ..., n) of the true distribution P ,
putting the probability 1

n on each outcome as

p̃(x) =
1

n

n∑

i=1

δ(x− xi) (4.27)

and let QΘ be the statistical model for the data, depending on the unknown parameter Θ. It follows

DKL(p̃||qΘ) = −H(p̃)−
∫
p̃(x) log q(x|Θ)dx (4.28)

where H(p̃) is the information entropy of p̃, not depending on Θ, whereas p̃ and qΘ = q(x|Θ) are the
corresponding densities of P̃ and QΘ, respectively. Putting Eq. (4.27) in the right-hand side of Eq.
(4.28):

DKL(p̃||qΘ) = −H(p̃)− 1

n

n∑

i=1

log q(xi|Θ)

= −H(p̃)− 1

n
Lq(Θ|x) (4.29)

where Lq(Θ|x) is the log-likelihood of the statistical model. It directly follows that

argmin
Θ

DKL(p̃||qΘ) =
1

n
argmax

Θ
Lq(Θ|x) (4.30)

where the function argmin(argmax)f(Θ) retrieves the minimum (maximum) of the function f(Θ).
Hence, another way to obtain the maximum likelihood estimation it to minimize the KL divergence

114



[275]; indeed, it can be shown that the KL divergence corresponds to the expected log-likelihood ratio
[276].

Extreme value theory.

It is the research area dealing with the statistical analysis of the extremal values of a stochastic vari-
able. Let xi (i = 1, 2, ..., n) be i.i.d. random outcomes of a distribution F . If Mn = max{x1, x2, ..., xn},
the probability to obtain an outcome greater or equal than Mn is:

Pr(Mn ≤ x) = Pr(x1 ≤ x, x2 ≤ x, ..., xn ≤ x) = Fn(x)

It can be shown that the limiting distribution Fn(x) is degenerate and should be normalized [277].
However, if there exists sequences of real constants an > 0 and bn such that

Pr
(
Mn − bn

an
≤ x

)
= Fn(anx+ bn)

then

lim
n−→∞

Fn(anx+ bn) = G(x) (4.31)

The function G(x) is the generalized extreme value (GEV) or Fisher-Tippett distribution

G(z) =

{
exp (−e−z) ξ = 0

exp
[
− (1− ξz)

1
ξ

]
ξ 6= 0

, z =
x− µ

σ
(4.32)

defined for 1− ξz > 0 if ξ 6= 0 and for z ∈ R if ξ = 0, where µ, σ and ξ are the location, scale and shape
parameters, respectively. The Gumbel distribution is related to the distribution of maxima [255, 256]
and it is retrieved for ξ = 0 [277]. The corresponding probability density g(x) is easily obtained from G
as

g(x) =
1

σ
exp

[
−x− µ

σ
− exp

(
x− µ

σ

)]
(4.33)

Finally, the two parameters µ and σ can be related to the mean µ̃ and to the standard deviation σ̃ of
the distribution, by means of the following relations:

µ̃ = µ+ γσ (4.34)

σ̃2 =
π2

6
σ2 (4.35)

where γ = 0.577215... is the Euler constant.

4.4 Discrimination power of MAF in different astrophysical scenarios

A good test statistic should not be specialized on a particular type of signal, showing sensitivity to an
as broad as possible set of anisotropies, even if specialized methods could reveal a weak signal that more
general methods generally are not able to capture. Moreover, a good method should depend on a small
number of external parameters and should be stable when changing internal parameters, if any.

In general, before applying a statistical method to a real data set, it should be tested on synthetic
data sets mimicking the features that are supposed to happen in real data. In the following, we will
name mock maps such synthetic data sets.
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Within our study, we use the Multiscale Autocorrelation Function (MAF) [278] to investigate the
clustering features of the arrival directions of simulated UHECR events and we present the results
obtained from the statistical analysis of several mock maps, corresponding to different astrophysical
models from which anisotropic distributions of events have been generated. In particular, we report
the statistical power of MAF against the null hypothesis of an underlying isotropic distribution, for two
values of the Type I error, α = 0.1% and 1%, and by varying the number of events in the sky from
20 to 60. In order to be sure that a signal is still detected in case of an existing background, isotropic
contamination has been included to these low statistics data sets.

A discussion on the significant clustering scales is presented, together with a brief comparison with
known existing methods as the angular autocorrelation function (ACF), the 2-point correlation function
and its enhanced version (2pt+) [236], the multipolar analysis [279] and the shape-strength method
(3pt) [237].

4.4.1 Existing methods

Many methods have been proposed to search for an anisotropy signal in the arrival direction distribution
of UHECRs, if any. Such methods can be grouped according to the “metric” and the statistical approach
they involve.

There are two main categories: binned and unbinned methods. The fundamental difference is that
binned methods depend on the bin size variable, whereas unbinned methods do not. The main advantage
of unbinned tests is the gain in robustness of the final significance. Unbinned methods can be more
sensitive to angular scales smaller than the uncertainty on the arrival directions of events (≈ 0.9◦ above
50 EeV in the case of Pierre Auger Observatory), even if such scales are generally out of interest,
because beyond the experimental capabilities. It follows that such methods lose statistical power at
larger angular scales. Hence, unbinned tests are generally expected to be very specialized methods and
they should not be suitable for anisotropy analysis. For this reason, in the following we will not consider
unbinned methods.

Methods can be also grouped by the configuration of events they use to find the anisotropy signal.
For instance, they could involve doublets or triplets, as the ACF or the 3pt methods, respectively. In
this study, we consider the following methods:

• ACF: a one-parameter 2-point autocorrelation function;

• UNM2pt: a one-parameter binned 2-point correlation function;

• MULTIPOL: a one-parameter binned method involving the harmonic analysis of the arrival
direction distribution;

• 2ptRayBin: a one-parameter binned 2-point correlation function involving the relative orientation
of the events on the sky (Rayleigh method);

• UNMSss: a two-parameter binned 3-point function involving principal component analysis;

where we have specified the number of parameters adopted by each method and their main features.

4.4.2 Astrophysical models

Within this study, we consider mock maps of events generated within the Pierre Auger Collaboration
[280]. Such maps have been chosen according to the peculiar type of anisotropy they exhibit. In
particular, we consider maps with large scale anisotropies (group A) as the following:

• DIPOLEx: dipole pointing in +x direction;
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Figure 4.13: Power for two different value of α (0.1% and 1%) as a function of the number of the events, for the astrophysical
models investigated in our study.

• QUADRUPOLEx: quadrupole pointing in +x direction;

• OCTUPOLEx, OCTUPOLEz: octupole pointing in +x and +z direction, respectively;

where the label x (or z) indicates that the axis of symmetry x (or z) is along the equatorial plan
(perpendicular to this plan). Then, we consider two mock maps where containing 35 cosmic rays within
5 ellipses (7 CR per ellipse) and 25 isotropically distributed events (group B):

• FiveEll10-10-25ISO: ellipses are randomly oriented circles of 10◦;

• FiveEll15-5-25ISO: randomly oriented ellipses 15◦ long and 5◦ wide.

Then, we consider two different cases of the Infra Red Astronomical Satellite (IRAS) catalog (group
C), where large scale anisotropy is expected to be dominant:

• IRAS0020-10ISO: 50 events are isotropically distributed and 10 events are sampled from astro-
physical objects with z ≤ 0.02;

• IRAS0020-ISO: 30 events are isotropically distributed and 30 events are sampled from astro-
physical objects with z ≤ 0.02;

In both cases, the distribution of events is weighted by 1/z2 and selection function, the IRAS mask is
not taken into account and the direction of events is obtained by a Gaussian smearing around sources,
with spread ρ = 3◦.
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Figure 4.14: Power for two different value of α (0.1% and 1%) as a function of the number of the events, for the other
astrophysical models investigated in our study.

This is followed by the Veron-Cetty & Veron (VCV) catalog (group D), where the density of sources
is smaller than IRAS case, resulting in an increased number of repeaters and increasing the anisotropy
signal at small angular scales:

• VCVflat0020: 60 events are sampled from astrophysical objects with z ≤ 0.02. The distribution
of events is not weighted by 1/z2;

• VCVflat0020-ISO: 30 events are isotropically distributed and 30 events are sampled from astro-
physical objects with z ≤ 0.02. The distribution of events is not weighted by 1/z2;

• VCV0020: 60 events are sampled from astrophysical objects with z ≤ 0.02. The distribution of
events is weighted by 1/z2;

• VCV0020-ISO: 30 events are isotropically distributed and 30 events are sampled from astrophys-
ical objects with z ≤ 0.02. The distribution of events is weighted by 1/z2.

In all cases, the direction of events is obtained by a Gaussian smearing around sources, with spread
ρ = 3◦. Finally, we consider mock maps with very few bright sources in the sky (group E), where an
even stronger anisotropy signal than previous cases is expected at small angular scales:

• RadioGaus_Iso_S: 48 events are isotropically distributed and 12 are sampled from three
sources, namely CenA (4.2 Mpc, ρ = 8.2◦), VirA (16.1 Mpc, ρ = 16.06◦) and ForA (19.6 Mpc,
ρ = 17.2◦);
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ACF 0.10 0.00 0.03 0.33 0.01 0.01 0.09 0.01 0.02 0.58 0.89 1.00 0.92 1.00 1.00 1.00 1.00
UNM2pt 0.20 0.92 0.10 0.98 0.00 0.00 0.01 0.00 0.02 0.47 0.20 1.00 0.15 0.83 1.00 0.92 0.90
MULTIPOL 0.02 0.02 0.01 0.74 0.20 0.03 0.04 0.01 0.08 0.48 0.13 0.94 0.05 0.09 0.87 0.18 0.19
2ptRayBin 0.53 0.83 0.01 0.97 0.14 0.02 0.07 0.01 0.04 0.82 0.85 1.00 0.60 0.98 1.00 1.00 1.00
UNMSss 0.11 0.81 0.02 1.00 0.01 0.01 0.07 0.01 0.08 0.87 0.77 1.00 0.73 0.98 1.00 1.00 1.00
MAF 0.57 0.78 0.01 0.94 0.02 0.01 0.09 0.01 0.04 0.75 0.77 0.99 0.35 0.85 1.00 0.99 0.98

Table 4.3: Fraction of realizations with 60 events providing a significance smaller than 0.1% for some existing methods
and the MAF method. Blue text corresponds to the best method, red text to the worst method and green text
to methods providing a fraction higher than 90%.

• RadioLog_A: 60 events are sampled from the sources and distributed as dN/dα = α−1, where
α is the separation angle in space;

• RadioLog_Iso_S: 18 events are sampled from the sources and distributed as dN/dα = α−1,
whereas 42 events are isotropically distributed.

It is worth remarking that events in each map are distributed by additionally taking into account
the exposure of the Pierre Auger Observatory.

4.4.3 Statistical analysis

In order to estimate the minimum number of events on an anisotropic sky where the MAF method is
able to perform a significant discrimination from isotropy, we investigate the statistical power of MAF
against the null hypothesis of an underlying isotropic distribution. In this specific study, the power 1−β
(where β is known as Type II error) is defined as the probability of correctly rejecting the null hypothesis
when it is known to be false. For such a purpose, we use the MAF as test statistic and, for a given
map, we count the fraction of skies providing a clustering signal with penalized p-value pmin ≤ α, with
pmin = p(smax) and α is the significance or, equivalently, the Type I error, defined as the probability of
wrongly rejecting the null hypothesis when it is known to be true. In any case, the power is expected
to increase with the number of events.

The described procedure is applied to 104 realizations of mock maps described in Sec. 4.4.2 by varying
the number of events in each sky from 20 to 60, and for two different values of the significance, namely
α = 0.1% and 1%. Results are shown all together in Figs. 4.13 and 4.14, to give a comprehensive idea
of how the statistical power behaves as a function of the astrophysical model, the significance and the
number of events in the sky.

Additionally, we show from Fig. 4.16 to Fig. 4.32 the power for each mock map separately (left panels)
together with the distribution of the angular scales Θ⋆ where the clustering signal is maximum, i.e. such
that smax = s(Θ⋆), and the chance probability is smaller than 5%, i.e. where pmin ≤ 0.05 (right panels).
A Gaussian kernel estimation has been used for histograms. In particular, we show results for models
in:

• group A: Fig. 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21;

• group B: Fig. 4.22 and 4.23;

• group C: Fig. 4.24 and 4.25;
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• group D: Fig. 4.26, 4.27, 4.28 and 4.29;

• group E: Fig. 4.30, 4.31 and 4.32.

As expected, the power increases with the number of events in any case. A more detailed discussion
about the power and the angular scales of clustering is provided in the next section.

4.4.4 Comparison with other methods

We report here the comparison between results obtained with the MAF method and methods briefly
described in Sec. 4.4.1. In particular, we consider only the cases with skies of 60 events providing
a significance smaller than 0.1%. The fraction of skies rejecting the null hypothesis of isotropy and
satisfying such requirements are reported in Tab. 4.3 [281].

For astrophysical models in group A, the ACF generally behaves equal or worse than other methods,
including MAF, whereas it is the best method for almost all astrophysical models where the anisotropy
signal is stronger at the smallest angular scales. UNM2pt, MULTIPOL, 2ptRayBin (2pt+) and UN-
MSss (3pt) are more sensitive to some types of large scale anisotropy, while maintaining competitive
performance even on small scale anisotropy. However, in general the MULTIPOL method is the least
sensitive among them.

The MAF method shows a high sensitivity to both small and large scale anisotropies, together with
a competitive statistical power comparable to that one of the other methods. Hence, it is suitable for
the application on real data sets of events together with ACF, 2pt+ and 3pt methods.

4.4.5 Discussion and conclusion

Figure 4.15: Isotropic distribution of 60 events. Probability density of angular scales such that the clustering signal gets
a maximum corresponding to pmin ≤ 0.05.

In the case of an isotropic distribution of events, the chance probability to obtain a given max{s(Θ)},
or, equivalently, a minimum p−value pmin, is uniformly distributed in the interval [0, 1]. Morover, within
such an interval, the distribution of the corresponding angular scales where s(Θ) gets a maximum, is
flat because all clustering scales are equally likely, as shown in Ref. [278]. Conversely, if we focus only
on the angular scales such that the clustering signal gets a maximum corresponding to pmin ≤ 0.05, the
corresponding probability density depends on the angular scale. In Fig. 4.15 such a distribution is shown
in the case of skies of 60 events. It is evident that the number of clusters occurring by chance within
5◦ is larger than the number of clusters occurring by chance at larger angular scales. Such a behavior
should be taken into account for the correct interpretation of the probability density of angular scales
corresponding to the different kind of anisotropy.

In fact, in those astrophysical scenarios where the MAF provides a lower statistical power, the prob-
ability density of angular scales is clearly contaminated by angular scales that appear more frequently
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in isotropic data sets with pmin ≤ 0.05. Conversely, in those models where the power is greater than
80%, the probability density is centered around the typical clustering scale of the anisotropy introduced
in the mock skies.

In conclusion, we have shown that the MAF is a competing catalog independent method for capturing
the anisotropy signal at both small scales and large scales. Moreover, from a comparison with the
methods presented in Sec. 4.4.1, it provides the best power in the case of the DIPOLEx anisotropy,
and the same power in the case of small scales anisotropies. Finally, it is worth remarking that the
MAF method is able to recover the clustering scale in the data in those astrophysical scenarios where
it provides a high statistical power.

Figure 4.16: DIPOLEx. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of the
events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.17: DIPOLEz. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of the
events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.18: DIPOLEzn. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of the
events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.
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Figure 4.19: QUADRUPOLEx. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.20: OCTUPOLEx. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.21: OCTUPOLEz. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.
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Figure 4.22: FiveEll10-10-25ISO. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number
of the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.23: FiveEll15-5-25ISO. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.24: IRAS0020-10ISO. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.25: IRAS0020-ISO. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.
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Figure 4.26: VCVflat0020. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.27: VCVflat0020-ISO. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.28: VCV0020. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of the
events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.29: VCV0020-ISO. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.
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Figure 4.30: RadioGaus-Iso-S. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.31: RadioLog-A. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.

Figure 4.32: RadioLog-Iso-S. Left panel: Power for two different value of α (0.1% and 1%) as a function of the number of
the events. Right panel: Probability density of angular scales such that the clustering signal gets a maximum
corresponding to pmin ≤ 0.05.
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Figure 4.33: Expected clustering signal, as a function of the angular scale, from a sky of N = 200 protons with E ≥ 100 EeV
(in the field of view of Pierre Auger Observatory) and for values of the Hubble parameter considered in
Fig. 3.26. Sources of 44% of events are AGN within 200 Mpc in the SWIFT-BAT 58-months catalog, whereas
the remaining 56% of events are isotropically distributed. Scenarios with intrinsic luminosity taken into
account (left panel) and not taken into account (right panel) are considered. The signal at each angular scale
is obtained by averaging over 104 Monte Carlo realizations.

Figure 4.34: Same as in Fig. 4.33, for scenarios where intrinsic luminosity of AGN is taken into account. The clustering
for N = 100 (left panel) and N = 50 (right panel) is considered.

4.5 Probing cosmological parameters with MAF

Motivated by the correlation between the arrival directions of UHECRs detected with the Pierre Auger
Observatory and AGN [89], we consider the distribution of sources corresponding to the positions of
AGN in the nearby universe (up to ≈200 Mpc), reported in the SWIFT-BAT 58-months catalog [282].
In particular, we consider two scenarios: i) all AGN are treated with equal intrinsic luminosity and ii)
the intrinsic luminosity of each AGN is taken into account. If L indicates the luminosity of an AGN,
and by assuming no source evolution, the probability to get an event from such a source is proportional
to L z−2ωGZK(z, Ethr), being Ethr the energy of particles at Earth. Thus, protons are then propagated
in a ΛCDM Universe until they reach the Earth. We consider only UHECRs with energy above 100 EeV
and with arrival direction lying in the field of view of the Pierre Auger Observatory, whose non-uniform
exposure is taken into account, as well as its angular uncertainty of 0.8◦. The effect of EMF is also taken
into account, smearing the direction around the source by sampling a Fisher-von Mises distribution, i.e.
the Gaussian counterpart on the sphere. The spreading angle is given by Eq. (3.62) in the case of r.m.s.

126



strength Brms = 2 nG and correlation length ℓ = 1 Mpc, according to the most recent upper bounds
[201]. Additionally, according to the result reported by Pierre Auger Collaboration in the case of the
SWIFT-BAT 58-months catalog, the 56% of events in the simulated sky are isotropically distributed
[89].

We investigate the clustering signal averaged over several Monte Carlo realizations (104 for each
astrophysical scenario), by mean of the multiscale autocorrelation function (MAF) [278], versus the
angular scale.

In this study, different values of the parameter H0 are considered, as well as an increasing number
of events in the sky. The results are shown in Fig. 4.33 and 4.34, for different astrophysical scenarios
and angular scales. In Fig. 4.33 we consider the cases where the intrinsic luminosity of AGN is taken
into account (left panel) and not taken into account (right panel), for skies of N = 200 protons. In
Fig. 4.34 we focus on scenarios where the intrinsic luminosity is accounted for, and vary the number of
protons, to put in evidence the impact of the statistics on the clustering signal. It is evident that, for a
fixed number of events, the clustering signal increases for increasing values of H0, whereas it decreases
for decreasing number of events, as expected3.

Such a study suggests that the observation of 100 protons with energy above 100 EeV should be
sufficient to probe the Hubble parameter. The large statistics required for this investigation can be
attained in few years of activity by future detectors as Auger North or JEM-EUSO. However, it is
worth remarking that we have considered only the most conservative case, with events above 100 EeV.
In Fig. 3.23 we show that an energy threshold of 60 EeV is sufficient enough to observe significant
differences in the flux, and, indirectly, on the clustering of protons. At such energy threshold, we
already expect that current experiments as the Pierre Auger Observatory will collect more than 200
UHECRs within a few years, providing the statistics required for this probe.

4.6 Multiscale cross-correlation function

In this section, we will briefly describe the generalization of the MAF method to the cross-correlation
analysis with a catalog of candidate sources. By assuming the same notation of the previous section,
we make use of another information measure, called mutual information, derived from the more general
Kullback-Leibler divergence. If ψdata(Θ) and ψcat(Θ) indicate the distribution on the sky, at the angular
scale Θ, of the data and catalog, respectively, and if ψdata,cat(Θ) denotes their joint distribution, the
mutual information is defined by

I (ψdata(Θ), ψcat(Θ)) = DKL (ψdata,cat(Θ)||ψdata(Θ)ψcat(Θ)) , (4.36)

i.e. the Kullback-Leibler divergence of the joint distribution from the product of the single distributions.
If the catalog and the data are totally independent, or, equivalently, if they are uncorrelated, then
ψdata,cat(Θ) = ψdata(Θ)ψcat(Θ) and I (ψdata(Θ), ψcat(Θ)) = 0 follows directly from the definition of
DKL in Eq. (4.20). See Appendix B for further detail.

The generalization to the Multiscale Cross-correlation Function (MCF) is straightforward. Instead
of the function A(Θ), quantifying the deviation of data from an isotropic distribution at the scale Θ,
we will make use of the function

C(Θ) = I (ψdata(Θ), ψcat(Θ)) =
N∑

k=1

ψdata,cat
k (Θ) log

ψdata,cat
k (Θ)

ψdata
k (Θ)ψcat

k (Θ)
, (4.37)

3The statistical power of the method increases with the number of events.
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Figure 4.35: Two points (black dots) correlating with one source (red dot): the weighted points are concentrated in two
adjacent boxes (left). Two points (black dots) not correlating with one source (red dot): the weighted points
are distributed on the neighbor cells (right).

quantifying the amount of correlation between the data and the catalog. As in the case of MAF, the
MCF is defined by

s(Θ) =
|Cdata(Θ)− 〈Ciso(Θ)〉|

σiso(Θ)
, (4.38)

where the subscript “iso” indicates that the corresponding quantity is estimated for isotropic realizations
of the data, thus for uncorrelated data sets. The procedure for the estimation of the distribution of
points is the same of the MAF case, involving the dynamical counting method. In Fig. 4.35 we show,
respectively, an application of our procedure to a correlating (left panel) and to an uncorrelating (right
panel) set of points: in the former case the weighted points are concentrated in two adjacent boxes while
in the latter case they are distributed on the neighbor cells.

In the case of MCF, the angular scale Θ⋆, where the significance is minimum, turns to be the most
significant correlation scale: it is the scale at which a greater number of correlating points occurs with
respect to the one occurring by chance, with no regard for a particular number of points, e.g. doublets or
triplets, as for standard cross-correlation estimators. In the next chapter, we will show the application
of both MAF and MCF to UHECR events detected with the Pierre Auger Observatory.

4.7 Conclusions

In this chapter we have introduced a new multiscale method for the investigation of the anisotropy
in the arrival direction distribution of UHECR events. It has been designed to perform both catalog-
independent and catalog-dependent analyses, and it is based on information theory and extreme value
statistics. We have shown that the multiscale method is a competing tool for the study of both small
and large scale anisotropies and correlations, providing a great discrimination power even in presence of
a strong background contamination and for quite different astrophysical scenarios.

As a possible application of our method, we have shown how to probe the Hubble parameter with
clustering analysis, by assuming that AGN in the nearby Universe (up to ≈ 200 Mpc), reported in the
SWIFT-BAT 58-months catalog, are the sources of UHECRs.
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In any case, whenever technical
progress opened a new window
into the surrounding world, I felt
the urge to look through this
window, hoping to see
something unexpected.

B. Rossi

When you know a thing, to hold
that you know it, and when you
do not know a thing, to allow
that you do not know it: this is
knowledge.

Kong Fu Tzu
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Chapter 5

Search for UHECR anisotropies in Auger

and experimental uncertainty effects

In this chapter and in the next ones, we will search for clustering and correlation signals in the arrival
direction distribution of UHECRs detected with the Pierre Auger Observatory. Such studies, dealing
with the search for the sources of UHECRs, represent two among the hottest topics in astroparticle
physics.

The first step is the study of the impact of experimental uncertainties on such signals. This will
be the focus of the present chapter. Indeed, the effect of finite angular and energy resolutions is to
reduce the clustering signal of the arrival directions and the correlation between UHECRs and catalogs
of candidate sources. The angular uncertainty smoothes out any clustered pattern, whereas the energy
uncertainty allows low energy events to be ranked as high energy ones, diluting the existing signal with
unclustered CRs and further reducing the correlation between their arrival directions and those ones
of candidate sources. The multiscale methods, previously introduced, is extensively adopted for such
studies. Note that our results have been presented to the Pierre Auger Collaboration as internal reports
[283, 284].

In the first section, we will present the method we have developed to smear the arrival directions
of simulated UHECRs. Our approach is rather general and it deserves attention because it is one of
the main ingredients required by the studies presented in this chapter and in the next one, where the
investigation of astrophysical scenarios will be presented. It will be adopted to simulate the finite angular
resolution of the Pierre Auger Observatory and to simulate the deflections of UHECRs propagating in
the irregular component of the extragalactic magnetic field. In the second section, we will define the
Auger data set adopted for our studies, whereas in the remaining sections the impact of experimental
uncertainties on clustering and correlation signals, respectively, will be presented.

5.1 Smearing the arrival directions of UHECRs

The angular smearing of the arrival directions of simulated UHECRs represents a fundamental tool for
the simulation of realistic sky maps of events. With such a technique, we are able to take into account,
in the simulations, the uncertainty on the reconstruction of the “true” arrival direction of UHECRs due
to the finite resolution of the Auger Observatory. However, the smearing technique is a quite general
method that can also be employed to perform fast simulations, without requiring a full Monte Carlo
propagation of particles from the source to the Earth. For instance, it can be adopted to simulate
the deflections due to the turbulent component of the extragalactic magnetic field in absence of energy
losses. In some cases, as those presented in this chapter, such an approach works very well, whereas in
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other cases, a full simulation is required. The extension of this technique to the case of the energy is
straightforward and it will be discussed in the next sections.

In general, the smearing of the arrival direction of a simulated UHECR is performed by sampling
either a Gaussian or a Rayleigh distribution around its original direction. However, such naive ap-
proaches only work in a limited number of circumstances, as we will see in the following, requiring
strong assumptions to be fulfilled.

In fact, we show that the distribution of the spherical coordinates significantly deviates from a simple
Gaussian distribution, even in the case of small smearing angles, when the point source is placed near
a pole. Moreover, we show that the distribution of the angular distances between the source and the
simulated events deviates from a Rayleigh distribution for large smearing angles. A wrong smearing of
arrival directions may introduce spurious clustering and correlation signals, altering the final results in
an unexpected way.

Hence, we have developed a simple method to obtain the correct distribution of events around a
source, with no regards for the size of the smearing angle and for the position of the source on the
sphere. Such a method, recently presented to the Pierre Auger Collaboration in an internal report [285],
will be adopted for any study presented in this chapter and in the next one.

5.1.1 Directional statistics

In one dimension, a Gaussian smearing of spread σx around a point S ≡ (x0) represents the set of points
Ti ≡ (xi) obtained by sampling the normal distribution with mean x0 and variance σ2x. Hence, points
are distributed on a straight line as N (x0, σx).

If the line is not straight, as in a circle, the Gaussian smearing requires the circular analogue of the
normal distribution, known as the von Mises distribution [286], whose probability density function is
given by

f(x;µ, κ) =
eκ cos(x−µ)

2πI0(κ)
, x ∈ [a, a+ 2π], a ∈ R (5.1)

where µ ∈ R is called location parameter, κ > 0 is called concentration parameter and I0(κ) is the
modified Bessel function of the first kind and of order 0. The points are clustered around x = µ with
dispersion 1/κ, playing the same role of x0 and σ2x, respectively, in the Gaussian smearing on the straight
line.

In two dimensions, if x and y are not correlated variables and σ2x = σ2y = σ2, the Gaussian smearing
of spread σ around a point S ≡ (x0, y0) represents the set of points Ti ≡ (xi, yi) obtained by sampling
the 2-dimensional normal distribution centered in S and variance σ2. Hence, points are distributed on
a flat plane as N (x0, σ) × N (y0, σ). However, if x and y are correlated and with different dispersions,
the most general form of the probability density function is

f (x, y;x0, y0, σx, σy) =
e
− 1

2
t

1−ρ2

2πσxσy
√
1− ρ2

(5.2)

with

t =
(x− x0)

2

σ2x
+

(y − y0)
2

σ2y
− 2ρ

(x− x0)(y − y0)

σxσy

The analogue of a 2-dimensional Gaussian distribution on a spherical surface is known as the von
Mises-Fisher distribution [286], that is a particular case of the more general Fisher distribution, whose
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Figure 5.1: Aitoff projection of 105 events smeared around S = (180, 0) with smearing σ = 3◦ (left panel), σ = 20◦ (middle
panel) and σ = 50◦ (right panel). Equatorial coordinates are shown and the dashed line indicates the galactic
plane.

Figure 5.2: Aitoff projection of 105 events smeared around a source placed in S = (60,−80) (left panel), S = (180, 0)
(middle panel) and S = (300, 80) (right panel). In each case the smearing angle is σ = 8◦. Equatorial
coordinates are shown and the dashed line indicates the galactic plane.

probability density function, in the case of a (p− 1)−dimensional unit sphere, is given by

fp−1(x;µ, κ) =
(κ
2

) p
2
−1 eκµ

T
x

Γ (p/2) Ip/2−1(κ)
(5.3)

where κ ≥ 0, ||µ|| = 1 and Iν(κ) is the modified Bessel function of the first kind and order ν. The
parameters µ and κ are called mean direction and concentration parameter. In the case of p = 3, studied
in detail by Fisher [287], points are distributed on a spherical surface, whereas the extension to p > 3 is
due to Watson and Williams [288]. If x and µ are written in spherical polar coordinates, the probability
density function becomes

f(φ, θ;α, β, κ) =
κ sin θ

4π sinhκ
eκ[cos θ cosα+sin θ sinα cos(φ−β)] (5.4)

where

x = (cos θ, sin θ cosφ, sin θ sinφ)T

µ = (cosα, sinα cosβ, sinα sinβ)T

The function in Eq. (5.4) provides the probability density of normally distributed points with random
directions (φ, θ) around the mean direction µ, and it reduces to the uniform distribution on the sphere
for κ = 0.

Such a probability density function can be further simplified. In fact, if µ is the pole of a unit sphere
then φ and θ are independent and we obtain

f(θ;κ) =
κ sin θ

2 sinhκ
eκ cos θ (5.5)

for θ ∈ [0, π] and φ uniformly distributed in the interval [0, 2π]. In the following we will refer to such a
distribution as the special Fisher distribution. However, in order to obtain points distributed around µ,
the smeared points around the pole should be opportunely rotated.
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Sampling the Fisher distribution. Let U be a stochastic variable uniformly distributed in the
interval [a, b], with a, b ∈ R, with probability density function g(U ; a, b) = 1/(b− a). In order to obtain
a general rule to sample the Fisher distribution by using random uniformly distributed numbers, the
differential distribution functions of U and θ are used:

g(U ; a, b)dU = f(θ;κ)dθ

By integrating the above equation, it follows

U

b− a
= − eκ cos θ

2 sinhκ

The extreme values of θ are 0 and π. By using the relationship 2 sinhκ = ek − e−k, the corresponding
extreme values of the variable U are (b−a)/(1− e2κ) and (b−a)/(e−2κ− 1). Without loss of generality,
we can assume a = 0 and b = 1, bounding the variable U to the interval [(1 − e2κ)−1, (e−2κ − 1)−1].
With such a prescription, it is straightforward to obtain the variable

θ = arccos

[
1

κ
log (−2U sinhκ)

]

whose probability density function is given by Eq. (5.5).

Rotating smeared directions. Let (α, δ) the equatorial coordinates of a point source on the unit
sphere, and let (φ′, θ′) the angular coordinates of a smeared point around the pole obtained by sampling
the uniform distribution and the Fisher distribution defined in Eq. (5.5). The 3-dimensional vector r′ in
the Cartesian space, corresponding to the coordinates (φ′, θ′), is given by

r′ =
(
cosφ′ cos θ′, sinφ′ cos θ′, sin θ′

)T

If, for instance, the pole is assumed to be at δ′ = −π/2, the rotation matrix R needed to move a smeared
point from its sampled direction to the correct one (around the point source), is provided by the product
of the two rotation matrices with Euler angles α and δ + π/2:

R(α, δ) =




cosα cos δ − sinα cosα sin δ
sinα cos δ cosα sinα sin δ
− sin δ 0 cos δ




By transforming the rotated vector r = R(α, δ)r′ to equatorial coordinates, the correct direction
(φ, θ) of the smeared point around the source is obtained.

Distribution of angular distances. It can be shown that the special Fisher distribution defined by
Eq. (5.5) describes the distribution of angular distances between the smeared points and their source.
It is worth remarking that the domain of the Rayleigh distribution is the positive real line [0,+∞[,
whereas the angular distance is defined in the bounded interval [0, π], as the special Fisher distribution.
In fact, in the limit of small angles sin θ ≈ θ and cos θ ≈ 1− θ2/2, hence:

f(θ;κ) ≈ κeκ

2 sinhκ
θe−

1
2
κθ2 ≈ κθe−

1
2
κθ2

that, for κ = σ−2, is equal to the Rayleigh distribution with parameter σ.
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5.1.2 Applications

In this section we show some application of our method to some special cases. In Fig. 5.1 we show, in
equatorial coordinates, the Aitoff projection of 105 events whose directions have been smeared around
a source S = (180, 0), with different smearing angles: σ = 3◦ (left panel), σ = 20◦ (middle panel) and
σ = 50◦ (right panel).

In Fig. 5.3, for each smearing angle, we show the probability density of the corresponding values
of the right ascension (left panel) and of the declination (middle panel), superimposed to the expected
Gaussian probability densities. In both cases, the Gaussian density describes the simulations with a good
approximation, for small values of the smearing angle. For smearing angles corresponding to medium
angular scales, the distribution of simulated events slightly deviate from the Gaussian expectation.
At larger smearing angles, the deviation from the Gaussian distribution is significant. In the case of
declination, it is worth noticing that the probability of finding an event on the poles is zero, as expected.

Figure 5.3: Left: Probability density of right ascension (left panel) and declination (middle panel) corresponding to sky
maps in Fig. 5.1. Solid lines are the expected Gaussian probability densities. Right: Probability density of
the angular distance of the smeared events from the source, corresponding to sky maps in Fig. 5.1. Solid lines
are the expected Fisher probability densities, whereas dashed lines indicate the Gaussian expectations.

Figure 5.4: Left: Probability density of right ascension (left panel) and declination (middle panel) corresponding to sky
maps in Fig. 5.2. Solid lines are the expected Gaussian probability densities. Right: Probability density of
the angular distance of the smeared events from the source, corresponding to sky maps in Fig. 5.2. Solid line
indicates the expected Fisher probability density.

In the right panel of Fig. 5.3, for each smearing angle, we show the probability density of the angular
distance of the smeared events from the source. For σ = 3◦, the density is well approximated by both
a Rayleigh and a Fisher distribution. However, the deviation from a Rayleigh becomes evident by
increasing the smearing angle. It is worth remarking that for σ = 50◦, the Fisher distribution shows a
cutoff for D = 180◦, i.e. the maximum value of the angular distance, whereas the Rayleigh distribution,
wrongly, do not show such a cutoff, extending to infinity.

In Fig. 5.2 we show, in equatorial coordinates, the Aitoff projection of 105 events whose directions
have been smeared around three sources, separately. In particular, the sources are placed in S =
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(60,−80) (left panel), S = (180, 0) (middle panel) and S = (300, 80) (right panel), and in each case the
smearing angle is σ = 8◦.

In Fig. 5.4, for each case, we show the probability density of the corresponding values of the right
ascension (left panel) and of the declination (middle panel), superimposed to the expected Gaussian
probability densities. In both cases, the Gaussian density describes the simulations with a good approx-
imation, if the source is not close to the poles. Conversely, when the source is placed near the poles, the
Gaussian density fails to reproduce the simulations.

In the right panel of Fig. 5.4, for each case, we show the probability density of the angular distance
of the smeared events from the source. As expected, the density is a special Fisher distribution with
concentration parameter κ = 1/82.

Such a method has been independently adopted in PARSEC, a software simulating the propagation
of protons in the Universe [210].

5.2 The Auger dataset

The Auger dataset used in this chapter is built by applying to the triggered events a fiducial cut to
ensure adequate containment inside the array. The cut requires that at least five active stations surround
the station with the highest signal, and that the reconstructed shower core be inside a triangle of active
detectors (see Sec. 1.6.2 for details). In the following, we will refer to such an event selection as the
standard quality cuts for anisotropy and correlation studies.

For the clustering analysis (Sec. 5.3), we use the data set of UHECR events recorded by the Auger
Observatory from 1 January 2004 to 5 June 2010, with reconstructed energies above 40 EeV and zenith
angles smaller than 60◦. The angular resolution, defined as the angular radius that would contain 68%
of the reconstructed events, is better than 0.9◦, while the energy resolution is 15%, with a systematic
uncertainty of 22%. The total number of CRs passing these criteria is 193. The number of events
corresponding to other energy thresholds Ethr, relevant for the present studies, is reported in Tab. 5.1.

Ethr (EeV) # Events
45 131
50 105
55 73
60 56
65 45
70 29
75 20

Table 5.1: Total number of Auger events above the energy threshold Ethr.

In the case of analysis in correlation with astronomical catalogues (Sec. 5.4), we focus our attention
on the 69 events with energy ≥ 55 EeV detected from 1 January 2004 to 31 December 2009. The
choice of such a smaller data set is motivated by our interest to investigate the impact of experimental
uncertainties on the correlation within 3.1◦ between the arrival directions of UHECRs with energy above
55 EeV and the positions of active galactic nuclei closer than 75 Mpc, reported by the Pierre Auger
Collaboration [89]. For such a purpose, we will also consider three smaller sets of events corresponding
to different epochs of data taking. We will name such sub-sets a Period I (1 January 2004 - 26 May
2006), Period II (27 May 2006 - 31 August 2007) and Period III (1 September 2007 - 31 December 2009).
We refer to [89] for further information about such periods and for details about the events.
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5.3 Search for an anisotropy signal with the MAF and effects of un-

certainties

A general approach to investigate the effect of uncertainties is as follows:

1. Smear the physical observables of interest and create ensemble(s) of skies (i.e. smeared data sets);

2. For each sky in the ensemble(s) estimate the chance probability of an underlying isotropic distri-
bution of events, by using a method introduced for this purpose;

3. Build the distribution of significances obtained in the previous step and estimate the impact of
the smearing on the decision making process about the null hypothesis.

This procedure has been applied in Ref. [289] for the autocorrelation function (ACF) and in Ref.
[290, 291] for the enhanced two point (2pt+) [236] and the shape-strength (3pt) [237] methods, to
investigate the effect of the angular and the energy resolution on the acceptance/rejection of the null
hypothesis in the case of Auger data.

By using the multiscale autocorrelation function (MAF), we have investigated how the chance prob-
ability (that Auger data is drawn from an isotropic distribution) changes by varying both energy and
angular scales of the analysis. Finally, we have studied, separately, the impact of the angular and energy
resolution on the previous result by means of the smearing procedure. In particular, we have created
ensembles of skies corresponding to:

• angular smearing of σ = {0.2◦, 0.8◦, 2.0◦}, corresponding to a smaller, equal and greater angular
resolution than the Pierre Auger Observatory [292], respectively;

• energy smearing of ∆E/E = {0.05, 0.10, 0.15}, corresponding to a smaller, equal and greater
energy resolution than the Pierre Auger Observatory [293], respectively;

5.3.1 Search for anisotropy with the MAF method

In order to investigate the dependence on the energy, we have performed a scan over the energy threshold
E and the angular scale Θ, according to similar studies for the ACF [294, 295]. In particular, the scan
over the energy is performed by fixing the value of E = Ethr (ranging from 45 to 70 EeV, in step of
1 EeV) and by selecting all events in the data set with energy equal or greater than Ethr.

The chance probability Pchance(E,Θ) of an underlying isotropic distribution is estimated for each
pair of parameters: Fig. 5.5 (upper panel) shows the result of such an analysis when the penalization
due to scan is not taken into account. The global minimum Pmin ∼ 1.3× 10−4 is found for E = 52 EeV
and Θ = 16.9◦.

If P̃Θ(E,Θ) is the chance probability penalized for the scan over Θ, we have estimated the dependence
on E of the new chance probability, by defining 1

P (E) = argmin
Θ
P̃Θ(E,Θ)

and obtaining the result shown in Fig. 5.5 (right panel), with a global minimum Pmin ∼ 0.01 for E =
52 EeV, in great agreement with results from 2pt+ and 3pt methods [296]. Finally, by fixing E =
52 EeV, in Fig. 5.6 (left panel) we show the corresponding Auger sky and in Fig. 5.6 (right panel) the
penalized chance probability versus the angular scale Θ, remarking the presence of the global minimum
at Θ = 16.9◦.

1The function argminx f(x, y) retrieves the minimum of the function f(x, y) with respect to the variable x.
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Figure 5.5: Unpenalized (left panel) and penalized (right panel) chance probability for the scan over the energy threshold
and the angular scale for Auger data. Each point in the plot shown in the lower panel is obtained from the
minimum chance probability, penalized because of the scan over Θ.

Figure 5.6: Auger events with energy E ≥ 52 EeV up to 5 June 2010 (left panel) and chance probability versus the angular
scale for this sky (right panel).

5.3.2 Effects on the anisotropy signal due to angular resolution

In the angular smearing procedure, the direction of each event in the data set is randomized according
to a Fisher-Von Mises distribution, i.e. the Gaussian distribution thrown on the sphere, with dispersion
σ. A smeared sky is made up of all randomized events: a smeared mock map is the ensemble of all
smeared skies corresponding to a smearing angle σ.

An example (σ = 0.8◦) of the distribution of the angular deviations between the original and 103

smeared directions is shown in Fig. 5.7: the solid line corresponds to a Rayleigh distribution with
dispersion ∼ 0.8◦, as expected from a Gaussian smearing in angle in the small-angles approximation.

Figure 5.7: Distribution of the angular deviations between the original and 103 smeared directions (σ = 0.8◦): the solid
line corresponds to a Rayleigh distribution with dispersion ∼ 0.8◦.

137



Mock map analysis. We have performed the MAF analysis on a smeared map of 103 skies, built
from a sample of 60 events of the VCV flat mock map. From a previous analysis by means of MAF, it is
known that the probability to correctly reject the null hypothesis for the unsmeared skies within such a
mock map, is close to 100% for sets of 60 events. In Fig. 5.8 we show the distribution of minimum chance
probability as estimated for each smeared sky in the map, for three different values of the dispersion:
namely σ = 0.2◦, σ = 0.8◦ and σ = 2.0◦. The value (≈ 0.001) of the minimum chance probability
corresponding to the original unsmeared sky is indicated by the arrow. In Tab. 5.2 we report, for each
dispersion, the probability to get a chance probability smaller than 1%, 2%, 5% and 10%, after the
smearing procedure: results show that at least 95% of smeared skies reject the null hypothesis H0 with
a significance of 2%. It is worth remarking that 100% of skies reject H0 with a significance of 10%, two
orders of magnitude higher than the original significance.

Figure 5.8: Distribution of minimum chance probability estimated for smeared realizations of a VCV flat sample sky of
60 events, for three different values of the dispersion: σ = 0.2◦, σ = 0.8◦ and σ = 2.0◦. The value (≈ 0.001)
of the minimum chance probability corresponding to the original unsmeared sky is indicated by the arrow.

σ (deg) P ≤ 1% P ≤ 2% P ≤ 5% P ≤ 10%

0.2◦ 99.8% 100% 100% 100%
0.8◦ 97.7% 100% 100% 100%
2.0◦ 82.5% 94.6% 99.7% 99.9%

Table 5.2: Cumulative chance probability for different significance thresholds by varying the resolution of the angular
smearing for a sky sampled from the VCV flat mock map. Chance probability for the unsmeared sky is ≈ 0.1%.

Auger data analysis. The same analysis has been performed on Auger data with E ≥ 52 EeV, i.e.
the energy threshold where the chance probability is minimum. In Fig. 5.9 we show the smeared map
of Auger data for three values of the dispersion: σ = 0.2◦, σ = 0.8◦ and σ = 2.0◦. In Fig. 5.10 (upper
panel) we show the distribution of minimum chance probability as estimated for each smeared sky in the
map, for the same values of the dispersion of the previous analysis. The value (≈ 0.01) of the minimum
chance probability corresponding to the original unsmeared sky is indicated by the arrow. In Fig. 5.10
(middle panel) we show the distribution, for the three values of the angular dispersion, of the angular
scales where the chance probability is minimum: the dominant clustering scale is Θmin = 16.9◦. In
Fig. 5.10 (lower panel) we show the chance probability versus the angular scale Θ for the unsmeared sky
and the average chance probability from the smeared map (σ = 0.8◦) with 68% and 90% regions around
the mean value. In Tab. 5.3 we report, for each dispersion, the probability to get a chance probability
smaller than 1%, 2%, 5% and 10%, after the smearing procedure on Auger data: results show that at
least 98.5% of smeared skies reject the null hypothesis H0 with a significance of 10% when the angular
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resolution of the Pierre Auger experiment is taken into account.

Figure 5.9: Smeared realizations of Auger data with E ≥ 52 EeV. Map of smeared skies for three different values of the
dispersion: σ = 0.2◦ (red dots), σ = 0.8◦ (black dots) and σ = 2.0◦ (blue dots).

σ (deg) P ≤ 1% P ≤ 2% P ≤ 5% P ≤ 10%

0.2◦ 24.3% 88.6% 99.9% 100%
0.8◦ 7.3% 35.6% 84.1% 98.5%
2.0◦ 5.6% 20.5% 58.4% 85.3%

Table 5.3: Cumulative chance probability for different significance thresholds by varying the resolution of the angular
smearing for Auger data with E ≥ 52 EeV. Chance probability for the unsmeared sky is ≈ 1%.

5.3.3 Effects on the anisotropy signal due to energy resolution

In the energy smearing procedure, the energy of the i−th event in the data set is randomized according
to a Gaussian distribution with dispersion σEi

. A smeared sky is made up of all randomized events: a
smeared mock map is the ensemble of all smeared skies corresponding to a smearing energy σE .

An example (∆E/E = 0.10, E = 52 EeV) of the distribution of the deviations between the original
and 103 smeared energies is shown in Fig. 5.11: the solid line corresponds to a Gaussian distribution
with a dispersion ∼ 5 EeV.

For the angular smearing analysis, we have selected the Auger events with E ≥ 52 EeV: this data set
is composed by the 91 highest energy events. Because of the energy smearing, we use a larger data set,
extended down to a lower energy threshold corresponding to 40 EeV: in fact, 27% of events with energy
E = 40 EeV are expected to be smeared up to an energy of 52 EeV when, for instance, ∆E/E = 0.15.

∆E/E P ≤ 1% P ≤ 2% P ≤ 5% P ≤ 10%

0.05 5.1% 13.3% 31.3% 53.5%
0.10 2.9% 7.9% 17.7% 34.1%
0.15 6.0% 10.2% 17.7% 28.2%

Table 5.4: Cumulative chance probability for different significance thresholds by varying the resolution of the energy
smearing for Auger data with E ≥ 40 EeV. Chance probability for the unsmeared sky, corresponding to an
energy threshold of 52 EeV, is ≈ 1%.

After each smearing, the first 91 highest energy events are used for the successive analysis. In order
to give a representation of the contaminating events with an unsmeared energy smaller than 52 EeV,
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Figure 5.10: Smeared realizations of Auger data with E ≥ 52 EeV. Upper Panel. Distribution of minimum chance
probability estimated for the three values of the dispersion. The value (≈ 0.01) of the minimum chance prob-
ability corresponding to the original unsmeared sky is indicated by the arrow. Middle panel. Distribution
of the angular scales where the chance probability is minimum, for the three values of the dispersion. Lower

panel. Chance probability versus the angular scale Θ for the unsmeared sky (black line) and the average
chance probability (red line) from the smeared map (σ = 0.8◦) with 68% and 90% regions around the mean
value.

we have assigned an integer rank to each unsmeared event in the original data set, ordered descending
by energy. Successively, we have repeated the ranking procedure for each smeared sky. In Fig. 5.12 (left
panel) we show the smeared map of Auger data for three values of the relative dispersion: ∆E/E = 0.05,
∆E/E = 0.10 and ∆E/E = 0.15. In Fig. 5.12 (right panel) we show the rank transitions from the
unsmeared data set (initial) to the smeared one (final) for ∆E/E = 0.10, and the probability for such
a transition, as estimated from 103 smeared realizations. As expected, low rank events, corresponding
to the highest energy ones, are still present in each smeared sky.

The MAF analysis has been performed on the energy smeared map, built as previously described. In
Fig. 5.13 (upper panel) we show the distribution of minimum chance probability as estimated for each
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Figure 5.11: Distribution of the energy for 103 smeared realization (∆E/E = 0.10, E = 52 EeV): the solid line corresponds
to a Gaussian distribution with dispersion ∼ 5 EeV.

Figure 5.12: Smeared realizations of Auger data with E ≥ 52 EeV. Left: Map of smeared skies for three different values of
the relative dispersion: ∆E/E = 0.05 (red dots), ∆E/E = 0.10 (black dots) and ∆E/E = 0.15 (blue dots).
Right: Rank transition probability from the original data set (initial), of Auger events with E ≥ 40 EeV, to
the smeared one (final), for ∆E/E = 0.10.

smeared sky in the map, for three values of the relative dispersion: ∆E/E = 0.05, ∆E/E = 0.10 and
∆E/E = 0.15. The value (≈ 0.01) of the minimum chance probability corresponding to the original
unsmeared sky is indicated by the arrow. In Fig. 5.13 (middle panel) we show the distribution, for the
three values of the energy dispersion, of the angular scales where the chance probability is minimum: the
dominant clustering scale is Θmin = 16.9◦; however there is a greater number of small scales (increasing
with the value of the dispersion) than in the case of the angular smearing, meaning that the energy
smearing increases the small scale clustering. In Fig. 5.13 (lower panel) we show the chance probability
versus the angular scale Θ for the unsmeared sky and the average chance probability from the smeared
map (∆E/E = 0.10) with 68% and 90% regions around the mean value: from this plot it is evident
that the small scale clustering is not significative. In Tab. 5.4 we report, for each relative dispersion, the
probability to get a chance probability smaller than 1%, 2%, 5% and 10%, after the smearing procedure:
results show that just a small fraction of smeared skies reject the null hypothesis H0 with a significance
of 10% when the energy resolution of the Pierre Auger experiment is taken into account.

Finally, we have performed the same analysis previously described by using 300 smeared skies. For
each smeared sky, we have scanned over the energy threshold E and the angular scale Θ to estimate
the minimum chance probability Pchance(E,Θ). In this case, for the MAF analysis, we have selected
the number of events corresponding to the energy where the penalized chance probability P̃Θ(E,Θ)
is minimum. In Fig. 5.14 (upper panel) we show the distribution of P̃Θ(E,Θ), obtained from such a
procedure for ∆E/E = 0.10: the value (≈ 0.01) of the minimum chance probability corresponding
to the original unsmeared sky is indicated by the arrow. In Fig. 5.14 (middle panel and lower panel)
are shown the distribution of the angular scales and of the number of events over the energy threshold,
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Figure 5.13: Upper panel. Distribution of minimum chance probability estimated for the three values of the relative
dispersion. The value (≈ 0.01) of the minimum chance probability corresponding to the original unsmeared
sky is indicated by the arrow. Middle panel. Distribution of the angular scales where the chance probability
is minimum, for the three values of the dispersion. Lower panel. Chance probability versus the angular
scale Θ for the unsmeared sky (black line) and the average chance probability (red line) from the smeared
map (∆E/E = 0.10) with 68% and 90% regions around the mean value.

respectively, where the chance probability is minimum: Θmin = 16.9◦ turns to be the dominant clustering
scale; scales around 10◦ represent about 20% of the distribution. In Tab. 5.5 we report, for this value
of the dispersion, the probability to get a chance probability smaller than 1%, 2%, 5%, 10% and 20%,
after both the smearing procedure and the scanning over energy and angular scale: results show that an
higher fraction of smeared skies reject the null hypothesis H0 with a significance of 10% when the energy
resolution of the Pierre Auger experiment is taken into account; indeed, the significance is smaller than
20% for the 95% of smeared skies, a better result than that one of the previous approach.
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Figure 5.14: Energy-Θ scan of smeared skies, for the relative dispersion ∆E/E = 0.10. Upper panel. Distribution of
minimum chance probability: the value (≈ 0.01), corresponding to the original unsmeared sky, is indicated
by the arrow. Middle panel. Distribution of the angular scales where the chance probability is minimum:
the value (16.9◦), corresponding to the original unsmeared sky, is indicated by the arrow. Lower panel.

Distribution of the number of events over the energy threshold where the chance probability is minimum: the
value (91), corresponding to the original unsmeared sky, is indicated by the arrow..

∆E/E P ≤ 1% P ≤ 2% P ≤ 5% P ≤ 10% P ≤ 20%

0.10 18.7% 40.2% 63.3% 82.31% 96.14%

Table 5.5: Cumulative chance probability for different significance thresholds, for Auger data with smeared energy E ≥
40 EeV and relative dispersion ∆E/E = 0.10. Chance probability for the unsmeared sky, corresponding to an
energy threshold of 52 EeV, is ≈ 1%.
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5.3.4 Discussion and conclusion

We have performed several analyses of Auger data up to June 5th 2010, based on a multiscale approach,
for detecting an anisotropy signal in the arrival direction distribution of UHECR. From the multiscale
autocorrelation analysis, the minimum chance probability (≈ 1%) of an underlying isotropic distribution
has been obtained for an energy E = 52 EeV, in agreement with previous studies, and a clustering angular
scale Θ ≈ 16.9◦.

Indeed, by means of a smearing procedure, we have investigated the impact on the chance proba-
bility of taking into account angular and energy resolution of the surface detector of the Pierre Auger
Observatory. Our results showed that for an angular uncertainty σ = 0.8◦, such a chance probability
reduced down to 10%. However, for a relative energy uncertainty ∆E/E = 0.1, the anisotropy signal is
still present with a significance of about 19% for the 95% of smeared skies. In each case, the dominant
clustering scale is still Θ ≈ 16.9◦.

The obtained results should be interpreted from an ultra-conservative point of view: they represent
an upper limit to the real chance probability for the anisotropy signal. In fact, results are affected by
the robustness of the method with respect to the smearing, according to the detector resolution.

5.4 Search for correlations with AGNs with the MCF and uncertain-

ties effects

In this section, we present an analysis similar to that one presented in the previous section, but performed
by using the multiscale cross-correlation function (MCF) to investigate the impact of experimental
uncertainties on the cross-correlation signal between Auger data and the SWIFT-BAT 39-month catalog
of AGN in the nearby Universe [268, 297] (for three different redshift: z < 0.0018, z < 0.0024 and
z < 0.0047). In particular, we have created ensembles of skies corresponding to:

• angular smearing of σ = 0.8◦, corresponding to the angular resolution of the Pierre Auger Obser-
vatory [292];

• energy smearing of ∆E/E = 0.10, corresponding to the energy resolution of the Pierre Auger
Observatory [293];

In the following, we will talk about a distribution of points (data) and a distribution of sources
(catalog), with no loss of generality. Indeed, we will indifferently refer to a Montecarlo realization of
points not correlating with the catalog, as uncorrelating sky, uncorrelating distribution or uncorrelating
points.

We consider the 69 events (corresponding to Period I+II+III) with energy E ≥ 55 EeV [89] detected
by the Pierre Auger Observatory. Indeed, sources with known redshift z < 0.018 (75 Mpc), z < 0.024
(100 Mpc) and z < 0.047 (200 Mpc) have been considered separately. In particular Seyfert galaxies,
blazars, QSO, and unclassified AGN from the SWIFT catalog (Fig. 5.15, left panel), have been taken
into account.

In Fig. 5.15 (right panel) we show the penalized chance probability versus the angular scale Θ, for the
cross-correlation between Auger data and SWIFT: the global minimum at Θ = 2.53◦ (P ≈ 8.0× 10−4)
is evident when sources within 75 Mpc and 100 Mpc are considered.

5.4.1 Effects on the correlation signal due to angular and energy resolutions

We have separately performed the MCF analysis on angular and energy smeared maps of 103 skies,
built from the Auger data set of 69 events with E ≥ 55 EeV. For the angular smearing analysis, we
have selected σ = 0.8◦ and Auger events with E ≥ 55 EeV up to 31 December 2009. Because of the
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Figure 5.15: Left: Candidate sources (small dots of different colors are used according to redshifts: z < 0.018, z < 0.024
and z < 0.047) and Pierre Auger Observatory data (black and purple big dots). Equatorial coordinates are
shown. Right: Chance probability for the cross-correlation between Auger data and SWIFT.

energy smearing, a larger data set, we extend the data set to a lower energy threshold corresponding
to 40 EeV: in fact, about 1% of events with energy E = 40 EeV are expected to be smeared up to an
energy of 55 EeV, if ∆E/E = 0.10.

After each smearing, the first 69 highest energy events are used for the successive analysis. In order
to give a representation of the contaminating events with an unsmeared energy smaller than 55 EeV,
we assigned an integer rank to each unsmeared event in the original data set, ordered descending by
energy. Successively, we have repeated the ranking procedure for each smeared sky, with results shown
in Fig. 5.12.

In Fig. 5.16 we show the distribution of minimum chance probability, estimated from angular and
energy smeared maps, for the cross-correlation between Auger data and objects from the SWIFT catalog
within three different redshift (z < 0.018, z < 0.024 and z < 0.047). The values of the minimum chance
probability, corresponding to the original unsmeared skies, are indicated by the arrows.

In Tab. 5.6 we report, for each redshift, the probability to get a chance probability smaller than
1%, 2%, 5% and 10%, after the angular and energy smearing procedures.

Finally, in Fig. 5.17 and 5.18 we show the chance probability versus the angular scale Θ for the
unsmeared sky and the average chance probability from the smeared maps (σ = 0.8◦ and ∆E/E = 0.10,
respectively) with 68% and 90% regions around the mean value.

Results show that 100% of smeared skies reject the null hypothesis H0 with a significance of at
most 2% when the angular resolution of the Pierre Auger experiment is taken into account for the
cross-correlation with objects within 100 Mpc. Indeed, almost 100% of smeared skies reject the null
hypothesis H0 with a significance of at most of 2% when the energy resolution of the Pierre Auger
experiment is taken into account, again for distances within 100 Mpc.

It is worth remarking that for both smearing analyses, 100% of smeared skies kept correlated with
the SWIFT catalog at an angular scale of about 2.6◦.

5.4.2 Discussion and conclusion

We have performed several analyses of Auger data up to 31 December 2009, based on a multiscale
approach, for detecting a correlation signal with the distribution of astrophysical objects in the SWIFT
catalog.

From the multiscale cross-correlation analysis, the minimum chance probability (≈ 0.1%) of an
uncorrelated distribution of events has been obtained for sources within 75 Mpc and 100 Mpc, in
agreement with previous studies, and a correlation angular scale Θ ≈ 2.6◦.

Indeed, by means of a smearing procedure, we have investigated the impact on the chance probability
of taking into account angular and energy resolution of the surface detector of the Pierre Auger Obser-

145



Figure 5.16: Distribution of minimum chance probability, estimated from angular and energy smeared maps, for the cross-
correlation between Auger data and objects from the SWIFT catalog within three different redshift (z < 0.018,
z < 0.024 and z < 0.047). Chance probability for the unsmeared sky, ≈ 0.0008 (for z < 0.018 and z < 0.024)
and 0.006 (for z < 0.047), is indicated by the arrows.

vatory. Our results showed that for an angular uncertainty σ = 0.8◦, such a chance probability reduced
down to 2% for objects within 100 Mpc. However, for a relative energy uncertainty ∆E/E = 0.1, the
correlation signal is still present even if it reduced down to 2% for objects within 100 Mpc. It is worth
remarking that for both smearing analyses, 100% of smeared skies kept correlated with the SWIFT
catalog at an angular scale of about 2.6◦.

The obtained results should be interpreted from an ultra-conservative point of view: they represent
an upper limit to the real chance probability for the anisotropy signal. In fact, results are affected by
the robustness of the method with respect to the smearing, according to the detector resolution.
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Figure 5.17: Angular smearing. Chance probability versus the angular scale Θ for the unsmeared sky (black line) and
the average chance probability (red line) from the smeared map (σ = 0.8◦) with 68% and 90% regions around
the mean value. From top to bottom each plot corresponds to the cross-correlation between Auger data and
the objects from the SWIFT catalog, for three different redshift: z < 0.018 and z < 0.024 and z < 0.047.

Figure 5.18: Energy smearing. Chance probability versus the angular scale Θ for the unsmeared sky (black line) and
the average chance probability (red line) from the smeared map (∆E/E = 0.10) with 68% and 90% regions
around the mean value. From top to bottom each plot corresponds to the cross-correlation between Auger
data and the objects from the SWIFT catalog, for three different redshift: z < 0.018 and z < 0.024 and
z < 0.047.

5.5 Conclusions

In this chapter, we have extensively used multiscale methods, introduced in the previous chapter, to
search for an anisotropy signal in Auger UHECR data, as well as for a correlation with candidate objects
in astronomical catalogues. We have investigated the influence of angular and energy uncertainties on
both the anisotropy and the correlation signals of events detected with the Pierre Auger Observatory.
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Angular smearing σ = 0.8◦

z (redshift) P ≤ 1% P ≤ 2% P ≤ 5% P ≤ 10%

0.018 99.9% 100% 100% 100%
0.024 97.3% 100% 100% 100%
0.047 38.6% 81.7% 100% 100%

Energy smearing ∆E/E = 0.10

z (redshift) P ≤ 1% P ≤ 2% P ≤ 5% P ≤ 10%

0.018 96.5% 99.7% 100% 100%
0.024 92.3% 99.1% 100% 100%
0.047 28.9% 67.6% 99.5% 100%

Table 5.6: Angular and energy smeared maps of Auger data with E ≥ 55 EeV: cumulative chance probability for different
significance thresholds by varying the redshift of objects in the SWIFT catalog. Chance probability for the
unsmeared sky is ≈ 0.1% (for z < 0.018 and z < 0.024) and 0.6% (for z < 0.047).

The effects of both angular and energy resolution of the detector are generally ignored in clustering stud-
ies: we have shown that they have an impact on the estimated signal. In particular, the energy resolution
significantly affects the clustering, whereas the angular resolution negligibly affects such studies.

Our study has benefited of the smearing technique introduced at the beginning of this chapter, to
account for both angular and energy resolution of the detector. In the next chapters, we will adopt the
same methods to explore possible astrophysical scenarios able to explain data collected with the Pierre
Auger Observatory.
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The scientist has a lot of
experience with ignorance and
doubt and uncertainty, and this
experience is of very great
importance, I think.

R.P. Feynman

It is better to light one small
candle than to curse the
darkness.

Kong Fu Tzu
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Chapter 6

Clustering and correlation of UHECR in

Auger: astrophysical scenarios

The nature of the sources of UHECRs is still not known. In the first chapter we have discussed several
candidates, characterized by different astrophysical features. In this chapter, we focus our attention to
one of the global observables representing a distinctive signature of the nature of such candidate sources,
namely their number density, defined as the number of objects per unit volume. An indirect estimation
of the density of sources should help to restrict the number of candidates: in the following, we present
the results of our studies which provide lower bounds to such a density by means of clustering analysis.

Hence, we explore the astrophysical scenarios that could be responsible for the observed clustering
and correlation in Auger data, as presented in the previous chapter. We perform several studies, inde-
pendent from each other but sharing the same common thread, i.e. the density of sources. In particular,
we i) infer the density of sources of UHECRs; ii) put bounds on the r.m.s. strength of the extragalactic
magnetic field; iii) investigate the possibility that nearby black holes are the sources of observed UHE-
CRs; iv) investigate the impact of the choice of the catalog on the correlation signal. We describe our
results in four separated sections, each one dedicated to a particular study that has been presented to
the Pierre Auger Collaboration as an internal report.

Simulations with HERMES (see Chap. 2 and 3) and analyses with multiscale methods (see Chap. 4)
have been extensively used for such investigations. We refer to Sec. 5.2 for the description of the selection
of Auger events used in the present chapter.

6.1 Bounds on the density of UHECR sources with MAF

6.1.1 Relating the density of UHECR sources to the observation of clustering

The idea behind the studies presented in this chapter is sketched in Fig. 6.1. We show how the intensity
of the clustering signal is related to the density of sources of UHECRs and to the deflections that such
particles experience during their propagation, because of the intervening magnetic fields. In order to
understand the figure, we have to consider some extreme astrophysical scenarios.

Let us consider the case of small deflections, i.e. the intensity of magnetic fields is weak and the
mass composition of UHECRs is light. If the number of sources is small and the number of observed
particles is fixed, UHECRs tend to be highly clustered around such sources and a certain number of
clusters is expected. Conversely, for an increasing number of sources, a decreasing number of clusters is
expected, together with a diluted clustering signal with respect to the previous case.

Let us consider now a small number of sources and increasing deflections, corresponding to the
astrophysical scenario with more intense magnetic fields and/or heavier mass composition. In this case,
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Figure 6.1: Schematic representation of the relationship between the clustering of UHECRs, the density of their sources
and the deflections they experience because of the intervening magnetic fields.

clusters around sources are still detectable up to a certain angular scale. Conversely, for an increasing
number of sources, the clustering signal decreases until it completely vanishes in the limit of very intense
magnetic fields, heavy composition and high density of sources.

Hence, the statistical analysis of clustering may provide tight constraints on astrophysical models of
UHECRs, and interesting bounds on the density of sources can be put. In the following, we will briefly
report existing studies in this direction and we will present our original contribution to this hot topic
in the rest of the chapter.

6.1.2 Relating our work to existing studies

Revealing and understanding the astrophysical sources of ultra high energy cosmic rays (UHECR) is still
an open problem, although a significant correlation with active galactic nuclei (AGN) has been recently
reported by the Auger collaboration [88, 89, 208]. Thus, it is of fundamental importance to constrain
the density of candidate source of UHECR by employing several different approaches.

By assuming small deflection of UHECR during propagation, an elegant statistical analysis of clus-
tering, based on theoretical arguments, has been proposed some years ago. By applying this method to
astrophysical models involving extragalactic sources and by using the 14 UHECR events with E > 1020

eV available at that time, the value ≈ 6 × 10−3 Mpc−3 has been obtained for the source density [226].
However, this result is subjected to high variance because of the small statistics. An extension of such
an analysis, providing also confidence intervals for the source density under reasonable assumptions,
has been given in Ref. [266], where the interval 180+2730

−165 × 10−3 Mpc−3 has been obtained at 68%
confidence level. A successive study, involving a Monte Carlo approach to the problem and different
astrophysical assumptions, has given 10−6 Mpc−3 as a lower bound to source density more luminous
than 20.5 mag, by using the Optical Redshift Survey (ORS) galaxy sample and events with energy
E > 4 × 1019 eV detected by the AGASA experiment [298]. The analysis on the same data set of
AGASA events, involving also the study of the flux of UHECR, has provided ≈ 10−6 Mpc−3 as a value
for source density, with large uncertainties [299]. The case of a finite number of uniformly distributed
proton sources has been also investigated in Ref. [231], where the value 1 − 4 × 10−5 Mpc−3 has been
estimated by using AGASA data, although the estimated interval at 95% confidence level ranges from
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≈ 2 × 10−6 Mpc−3 to ≈ 10−2 Mpc−3. More recently, both local and global approaches involving the
two-point autocorrelation function (ACF) or its variants, have been used to constrain the source density
and other purposes. Representative studies can be found in Refs. [234, 235], where toy models for
sources, mimicking the distribution of matter in the nearby universe or a uniform distribution, have
been investigated by using the 27 Auger events available at that time [208]. Results from such analyses
suggest a source density ranging from ≈ 0.2 × 10−4 Mpc−3 to ≈ 5 × 10−4 Mpc−3 with upper bound
≈ 10−2 Mpc−3 at 95% confidence level and for different values of UHECR energy threshold. Similar
scenarios have been investigated in Ref. [300], where the interval 0.0015 − 4 × 10−4 Mpc−3 has been
given at 90% confidence level for angular scales smaller than 6◦ by using the same data.

The main goal of the present study is to estimate both lower and upper bounds to the source density
of UHECR, by using the multiscale method [278]. We will consider two toy models: one following the
large scale structure of matter and another one with uniformly distributed sources in the nearby universe
(up to 250 Mpc). In any case, sources are assumed to be with uniform and equal luminosity, with a
spectrum whose injection index is 2.7 and producing only UHE protons. The produced particles are
successively propagated in a ΛCDM universe, taking into account non-negligible energy-loss processes
in the cosmic microwave background photon field in the limit of a null extragalactic magnetic field. The
clustering analysis is performed on Auger-like skies by varying both the density of sources from 10−6

Mpc−3 up to 10−3 Mpc−3 and the energy threshold of protons from 50 EeV to 60 EeV. Auger data is
used to constrain the source density.

This section is organized as follows. The first part is dedicated to the description and the simulation
of the astrophysical models adopted for this study. In the second part, we analyze simulated data and
we use the values for clustering obtained from Auger data to constrain the source density: we adopt
two local methods and one global method for this purpose, comparing and discussing the results.

6.1.3 Astrophysical models and simulations

We consider two simple toy models for investigating the ability of the MAF method to discriminate
among different source densities. It is worth remarking that we are considering sources of protons,
under the assumption of a null extragalactic magnetic field. In the first model, events are generated
from sources distributed according to the Two Micron All Sky Survey - Redshift Survey (2MRS) extended
source catalog and, in the following, we will refer to this model as “2MASS” or “2MRS”. In the second
model, events are generated from sources isotropically and homogeneously distributed in a sphere of a
given radius, and, in the following, we will refer to this model as “ISOHOM”.

The particular choice of such models is justified by the fact that for a fixed source density ns, we are
interested in investigating the clustering differences between skies of events following the distribution of
matter in the nearby universe (2MASS model) and skies of events generated by randomly distributed
sources (ISOHOM model). Moreover, we are interested in estimating bounds to source density by
comparing the clustering features of models with the clustering features of real data. For both models
we consider the following constraints:

1. Radius. The maximum distance to be adopted for simulations does not depend on the adopted
cosmological model but it mainly depends on the energy threshold of protons, although we have
found a dependence on the Hubble parameter at the present time and a weak dependence on the
injection index s. In this study, we consider a ΛCDM cosmology with H0 = 70.0 km/s/Mpc,
s = 2.7 and three different values of the energy threshold, namely 50, 55 and 60 EeV. The value
of the energy threshold affects the GZK horizon, defined as the distance within which 90% of the
observed flux above the energy threshold is expected to be produced.

2. Source weighting. The probability to get an event from a given source depends only on the
exposure of the detector [222] (the Pierre Auger Observatory in this study), the source distance z
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and the energy of the event by z−2ωGZK(z, Ethr), where the function ωGZK(z, Ethr) is defined in
Eq. (3.60). According to previous studies [300], we do not take into account the weight due to the
flux of the source (equal-flux assumption), and we do not consider the angular deflections due to
the unknown magnetic field.

3. Completeness of the catalog. We make use of the 2MRS catalog because it is the most
densely sampled all-sky redshift survey to date. It is a compilation [301] of the redshifts of the
Kmag < 11.25 brightest galaxies from the 2MASS catalog [302]. It contains approximately 22,000
galaxies within 200 Mpc, providing an unbiased measure of the distribution of galaxies in the
local universe, out to a mean redshift of z = 0.02, and to within 10◦ of the Galactic plane. The
2MRS catalog is complete for |b| < 10◦, i) {M < −24, D < 120 Mpc} (with 11969 sources) or
ii) {M < −25.1, D < 200 Mpc} (with 2638 sources), where M is the source magnitude and D is
the source distance. The density of sources is strongly constrained by both the cuts in magnitude
and distance: for instance, the second cut allows to investigate only source densities smaller than
≈ 10−4 Mpc−3. In order to investigate higher densities, we extend the original catalog with sources
isotropically distributed in the sky and whose distances Dk are such that the catalog becomes
complete above 120 Mpc, up to the GZK horizon corresponding to the energy threshold adopted.
In Fig. 6.2 we show the number of sources as a function of the distance for the original 2MASS
catalog with {M < −24, D < 200 Mpc} (complete up to 120 Mpc), a completed version1 of the
catalog up to 200 Mpc, and another completed version of the catalog up to 250 Mpc generated by
our simulation code. In the following we will indicate with “2MASS+ISO” any extended version
of the 2MASS original catalog with isotropic sources. In order to evaluate the amount of isotropic
contamination due to the completing procedure, we compute the following quantity :

C(ns, Ethr) =

∫ zmax

z0
Niso(z)z

−2ωGZK(z, Ethr)dz∫ zmax

z0
Ncat(z)z−2ωGZK(z, Ethr)dz

∫ z

z0

Niso(z
′) +Ncat(z

′)dz′ =
4

3
πns

(
c

H0
z

)3

where Ncat and Niso are respectively the number of sources in the catalog and the number of
sources added from an isotropic distribution.

The case of ISOHOM model is much simpler, because isotropic sources are homogeneously gener-
ated in the sphere of a given radius and the corresponding catalog is complete by construction. It
is worth remarking here that in the cases of 2MASS+ISO and ISOHOM models, the parts of the
catalogues corresponding to random sources are not kept fixed but are produced “online”: each
sky of events is generated from a different random realization of the model. Finally, catalogues
corresponding to 2MASS model are subjected to the additional cut |b| < 10◦, whereas those ones
corresponding to ISOHOM model are not.

In Tab. 6.1 we report the parameters adopted to generate catalogues for both 2MASS and ISOHOM
models, successively adopted to generate mock maps of unsmeared events as described above. It is worth
noticing that skies generated by 2MASS model are expected to be anisotropic up to a certain density
and that even ISOHOM skies can be anisotropic for small values of the source density. We will verify
this hypothesis in the next sections. It can be shown that the amount of isotropic contamination for all
2MASS models is a simple linear function of the density as shown in Fig. 6.3.

Although some of our assumptions could appear not physical, we will see in the next sections that
very interesting conclusions may be drawn to constrain the source density of UHECR.

1This catalog has been generated by S. Mollerach and has been made available during private communications.
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Figure 6.2: Number of sources as a function of the distance for: the original 2MASS catalog with {M < −24, D < 200 Mpc}
(blue line), a completed version of the catalog by S. Mollerach (green line), and another completed version of
the catalog generated by our simulation code (red line).

Figure 6.3: 2MASS model. Isotropic contamination with respect to the original catalog as a function of the source density
ns for the 3 different energy thresholds.

6.1.4 Clustering analysis of simulated sky maps and Auger data

In this section we will analyze the mock maps of events generated from catalogues corresponding to
configurations in Tab. 6.1, for both 2MASS and ISOHOM models. We investigate the statistical power
of MAF against the models considered in this study, by varying all parameters in our parameter space
(i.e. the model, the energy threshold of protons and the source density). Then we investigate the
ability of MAF to discriminate among different source densities by employing two “local methods” and a
“global method”. The comparison with results obtained from Auger data is also discussed. For the sake
of completeness, we use the official data set of Auger events up to 25 January 2011 with standard quality
cuts for anisotropy studies and energy E ≥ Ethr. Moreover, in the case of 2MASS model only Auger
events with |b| ≥ 10◦ are considered. In Fig. 6.4 we show the skymap of 2MASS sources superimposed
on directions of Auger events for different energy thresholds.

Statistical power

In order to estimate the range of source densities where the MAF method is able to perform a significant
discrimination from isotropy, we investigate the statistical power of MAF against the 2MASS and the
ISOHOM models. In this specific study, the power 1 − β is defined as the probability of correctly
rejecting the null hypothesis of isotropy when it is known to be false. It is worth remarking that the
isotropy we are referring to should not be confused with the isotropy of sources in the ISOHOM model.
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R Ethr log
10
ns/Mpc−3 Note

200 55 -3.000 2MASS+ISO with M < −24
-3.250 2MASS+ISO with M < −24
-3.500 2MASS+ISO with M < −24
-3.750 2MASS+ISO with M < −24
-4.043 2MASS with M < −25.1
-4.250 2MASS with M < −25.1
-4.500 2MASS with M < −25.1
-4.750 2MASS with M < −25.1
-5.000 2MASS with M < −25.1
-5.250 2MASS with M < −25.1
-5.500 2MASS with M < −25.1
-6.000 2MASS with M < −25.1

200 60 -3.000 2MASS+ISO with M < −24
-3.250 2MASS+ISO with M < −24
-3.500 2MASS+ISO with M < −24
-3.750 2MASS+ISO with M < −24
-4.043 2MASS with M < −25.1
-4.250 2MASS with M < −25.1
-4.500 2MASS with M < −25.1
-4.750 2MASS with M < −25.1
-5.000 2MASS with M < −25.1
-5.250 2MASS with M < −25.1
-5.500 2MASS with M < −25.1
-6.000 2MASS with M < −25.1

250 50 -3.010 2MASS+ISO with M < −24
-3.250 2MASS+ISO with M < −24
-3.500 2MASS+ISO with M < −24
-3.750 2MASS+ISO with M < −24
-4.000 2MASS+ISO with M < −24
-4.250 2MASS+ISO with M < −24
-4.500 2MASS+ISO with M < −24
-4.750 2MASS+ISO with M < −24
-5.000 2MASS+ISO with M < −24
-5.250 2MASS+ISO with M < −24
-5.500 2MASS+ISO with M < −24
-6.000 2MASS+ISO with M < −24

Table 6.1: List of parameters adopted to generate the catalogues for 2MASS model; ISOHOM catalogues are generated
with the same parameters, with the only difference that all sources are random. R is the maximum source
distance in Mpc units, Ethr is the proton energy threshold in EeV units and M indicates the source magnitude.

In Fig. 6.5 we show the power vs source density for both 2MASS (left panel) and ISOHOM (right
panel) mock maps. A sky is labelled as anisotropic if, for the fixed value α = 1% of the significance,
the penalized chance probability defined in Eq. (4.22) is smaller or equal than α. For applications, a
power of 90% is generally required: under this threshold the method could miss to detect an existing
anisotropy signal. For considered mock maps, the power increases by decreasing the source density,
as expected. In fact, smaller densities reflect a small number of sources and, of consequence, a higher
number of multiplets per source causing a greater deviation from isotropy.

Our analysis suggests that mock maps are likely to be isotropic, instead of anisotropic, above a
certain density threshold depending on the considered model. Being non-conservative and by considering
densities where 1 − β ≥ 0.2, the threshold is 10−3.75 ≤ n⋆s/Mpc−3 ≤ 10−3.5 for 2MASS, whereas for
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Figure 6.4: Distribution of sources for 2MASS catalog (with cuts M < −24 and M < 25.1) and Auger events for different
energy thresholds.

Figure 6.5: Statistical power vs source density for 2MASS (left panel) and ISOHOM (right panel) mock maps.

ISOHOM it is 10−4.25 ≤ n⋆s/Mpc−3 ≤ 10−4.0, depending in both cases on the energy threshold.

Source density discrimination: the “first local method”

For any catalog corresponding to a particular set of parameters in the parameters space, we build a
large mock map Mm(~v) of skies, where m = 2MASS, ISOHOM and ~v is a vector in the parameters
space corresponding to a particular choice of parameters reported in Tab. 6.1. The size of each sky in
the mock map is fixed by the number of Auger events with E ≥ Ethr (and, in the case of 2MASS, falling
outside the mask |b| < 10◦). For each sky S ∈ Mm(~v) we estimate the amount of clustering at the scale
Θ by s(Θ). Successively, we estimate the sample mean 〈s(Θ)〉 and the 68% dispersion region around
it 2. In Fig. 6.6 and 6.7 we show for the 2MASS and ISOHOM models, respectively, the estimated
value of 〈s(Θ)〉 vs Θ for some values of the source density ns and the three values of energy threshold
investigated.

2We have found that the distribution of s(Θ) is not gaussian and of consequence, the estimation of the dispersion by
the standard root mean square is avoided.
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Figure 6.6: 2MASS. Average amount of clustering 〈s(Θ)〉 vs Θ, for some values of the source density ns and the three
values of energy threshold investigated. The corresponding values obtained from the data are shown (black
solid line).

Figure 6.7: ISOHOM. Average amount of clustering 〈s(Θ)〉 vs Θ, for some values of the source density ns and the three
values of energy threshold investigated. The corresponding values obtained from the data are shown (black
solid line).

The comparison with the corresponding values obtained from the data is shown (black solid line). As
expected, the amount of clustering is higher when the source density is small, whereas it is lower when
the source density increases. Two main conclusions can be drawn from this simple analysis: i) curves
corresponding to different values of ns can be completely discriminated only for Θ < 10◦; ii) ns = 10−3

Mpc−3 represents an upper limit for the method, because the amount of clustering is compatible with
that one obtained by chance for values close to this density. The second effect is less visible for the
2MASS model because of the clustering of sources at the medium angular scales, but it is clearly visible
in the case of the ISOHOM model, where s(θ) is nearly constant for ns = 10−3.5 Mpc−3 and ns = 10−3

Mpc−3, as expected for isotropic skies [278]. This result is in agreement with the result obtained more
quantitatively from the statistical power. Moreover, few differences are evident among results obtained
from different values of Ethr: in fact, by increasing the energy threshold the average amount of clustering
increases and the dispersion around it gets narrower. Another important difference emerges between the
two considered models, during the comparison with the data. In fact, the MAF method is very sensible
to the presence of events clustered in the Centaurus region and the exclusion of some of those points,
due to the mask |b| < 10◦ in the 2MASS analysis, produces a lower clustering signal for the data, not
reflected in the ISOHOM analysis, where the mask is not considered and all Auger events are used.

The first method we apply to constrain the source density of UHECR is the same adopted in Ref.
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Figure 6.8: 2MASS (four panels left-hand side) and ISOHOM (four panels right-hand side) for Ethr = 55 EeV. Top and
left-bottom panels show the average clustering curve (solid line) with dispersion regions (68% orange, 95%
gray) vs source density ns and the value obtained from the data (dashed line) for Θ = 6◦, 12◦ and 26◦.
The right-bottom panels show the region obtained for source density bounds when 95% dispersion bands are
considered, for each Θ.

[300]. It is a local approach. First, for each Θ separately, the mean clustering 〈s(Θ)〉 (with 68% and
95% regions around it) is estimated for each source density: the result is an average clustering curve
with dispersion bands vs source density ns, as shown in the first three panels of Fig. 6.8 for 2MASS
(left-hand side) and ISOHOM (right-hand side) models with Ethr = 55 EeV and Θ = 6◦, 12◦ and 26◦.
Successively, we estimate the value of ns where such a curve and the clustering value obtained from
the data at the angular scale Θ lie across each other. The same estimation is thus employed by using
the curves corresponding to the upper and the lower dispersion bands. The result is shown, for both
models, in the fourth panels of Fig. 6.8: the region is obtained by using upper and lower 95% dispersion
bands for the source density, for each value of the angular scale Θ separately. A discussion of the result
will be provided further in the text.

Source density discrimination: the “second local method”

We propose a second local method to constrain source density bounds. This approach is explicitly based
on hypothesis testing, for each angular scale Θ separately. Let H0(Θ, ns) be the null hypothesis that
sdata(Θ) is a random outcome of the distribution of s(Θ) corresponding to the source density ns. The
alternative hypothesis is simply the negation of H0(Θ, ns) and the test size α, i.e. the significance, is
fixed a priori. H0(Θ, ns) is rejected if the fraction of skies providing a clustering more extreme than
that of data is smaller than α. In particular, when we test for the upper bound, H0(Θ, ns) is rejected
if p(Θ, ns) ≤ α, with

p(Θ, ns) = P [sdata(Θ) ≤ sns(Θ)] ,

whereas if we test for the lower bound, H0(Θ, ns) is rejected if p(Θ, ns) ≤ α, with

p(Θ, ns) = P [sdata(Θ) ≥ sns(Θ)] .

The lower bound to source density, at the angular scale Θ, is defined to be the lowest value of source
density for which H0(Θ, ns) has not been rejected. Analogously, the upper bound to source density is
defined to be the highest value of source density for which H0(Θ, ns) has not been rejected. It is worth
remarking that, within this approach, the comparison between the distribution of s(Θ) corresponding
to a particular value of the source density and the data is independently performed twice: the first time
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to test the hypothesis that the density is an upper bound and the second one to test the hypothesis that
the density is a lower bound.

Before discussing the results obtained from the first and the second method, we want to remark the
main differences between them.

Figure 6.9: Distributions of s⋆ns
for each source density in Tab. 6.1 in the case of the ISOHOM model with Ethr = 55 EeV.

The solid line indicates the value s⋆data obtained from the Auger data. For the highest value of the source
density, s⋆ns

tends to be the lowest; viceversa, for the lowest value of the source density, s⋆ns
tends to be the

highest: thus, histograms are ordered from the highest to the lowest source density from left to right. The
(properly penalized) chance probability corresponding to smax is reported in top x−axis for reference.

Discussion of the results from local methods

The first method provides a region delimited from a lower and an upper bound to source density: such
bounds are obtained independently by estimating the value where the data cross with the 95% dispersion
bands for the first time or, equivalently, where the value from the data falls into the 95% band around
〈sns〉.

Conversely, even if the second method provides a region delimited from a lower and an upper bound
to source density, such bounds are obtained independently by performing one-sided hypothesis testing
with α = 5%, i.e. with 95% confidence level.

In the first method the “identity” (lower or upper) of the bound is known before performing the test,
whereas in the second method there is no knowledge if the bound that is going to be tested is a lower
or an upper one.

In the first case, the hypothesis tested is something like “this value of the 95% band around 〈sns〉
for the lower (upper) bound is compatible with the data” and the test is performed only in the left
(right) tail of the distribution of s(Θ), by verifying if the value from the data falls in the 95% region
around the mean. In practice, two one-sided tests with 2.5% significance, corresponding to the area of
one tail, are performed. When the two results are combined to give a confidence interval, the confidence
level is given by the probability that the lower bound is correct (97.5%) and the upper bound is correct
(97.5%), that is 97.5%× 97.5% ≈ 95%.

In the second case, the hypothesis tested is something like “this value of the density is a lower
(upper) bound” and an one-sided test is performed with significance α2 = 5%. When the two results
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Figure 6.10: 2MASS model. Confidence regions at 95% confidence level estimated by the first (black) and the second
(orange) local method, for each value of the angular scale Θ and of the energy threshold.

Figure 6.11: ISOHOM model. Confidence regions at 95% confidence level estimated by the first (black) and the second
(orange) local method, for each value of the angular scale Θ and of the energy threshold.

are combined to give a confidence interval, the confidence level is 95%× 95% ≈ 90%. In order to obtain
the same confidence level of the first case (α1 ≈ 5%), the significance of hypothesis testing in the second
method should be α2 = 1−√

1− α1 ≈ 1− (1− α1
2 ) ≈ 2.5% for each test.

For the 2MASS model, the confidence regions at 95% confidence level estimated within the first and
the second method are shown superimposed in Fig. 6.10, to facilitate the comparison. In Fig. 6.11 we
show the results obtained for the ISOHOM model. The two methods are equivalent under such assump-
tions, and we have verified that the differences in the results are only due to statistical fluctuations,
because of the small number of mock skies adopted for this study (103).

Interestingly, for the 2MASS model the estimation of the lower bound is about 10−3.75 Mpc−3

(≈ 1.8× 10−4 Mpc−3) for almost any angular scale Θ < 10◦ and Ethr ≥ 55 EeV, with no regard for the
method adopted. For Ethr = 50 EeV the result is about 30% smaller, with lower bound ≈ 5.6 × 10−5

Mpc−3 for Θ < 10◦. The ISOHOM model provides even smaller values for the lower bounds, ranging
from 1.8× 10−5 to 5.6× 10−5 Mpc−3. Upper bounds are compatible with source density ≈ 1.0× 10−3

Mpc−3, although we can not exclude higher densities because this value represents a limit for the MAF
method, where clustering is consistent with that one observed by chance.

In Fig. 6.12 we show the lower bounds ρLB at 95% CL on the density of sources, as a function of
the angular scale, obtained for Ethr = 60 EeV from both first (MAF I) and second (MAF II) methods
discussed in this section, and from the autocorrelation analysis recently reported in Ref. [303]. Both

160



Figure 6.12: Protons with Ethr = 60 EeV. Lower bounds at 95% CL on the density of sources as a function of the angular
scale, obtained from both first (MAF I) and second (MAF II) methods discussed in this section, and from
the autocorrelation analysis recently reported in Ref. [303] for the uniform (left) and the realistic (right)
astrophysical scenarios.

uniform (ISOHOM) and realistic (2MRS) astrophysical scenarios are considered.
If the effects of intervening magnetic fields do not smooth out the clustering properties of UHECRs

on scales of about 5◦ (as can be expected in the case of a proton composition), the measurements imply
a 95%CL lower limit on the source density of order 10−4 Mpc−3. Conversely, if magnetic deflections are
larger, and such that the clustering properties observed reflect the expectation from the source scenario
only at larger angular scales, then less stringent lower bounds apply. They are about one order of
magnitude smaller for angular scales around 25◦. Such bounds apply to specific scenarios, since they
depend on the overall distribution of sources, and they are valid if the deflections of CR trajectories
by intervening magnetic fields do not erase the clustering properties expected from the models at the
angular scales considered.

Bounds from the MAF I and MAF II are in good agreement with each other, while an overall
agreement with bounds obtained from ACF is evident. In the ISOHOM model, MAF and ACF analyses
disagree at the largest angular scales: the multiscale method provides more stringent lower bounds
to the density of sources with respect to the standard autocorrelation. The latter provides a more
conservative estimation (i.e. smaller values of lower bounds) because, at large angular scales, the test
statistics captures a clustering signal that is not present by construction. Conversely, the MAF method
is characterized by a smaller rate of wrong rejections of the null hypothesis.

In the 2MRS scenario there is an overall agreement between MAF and ACF at any angular scale,
although at the smaller angles, below 10◦, the MAF provides again more stringent lower bounds.

Source density discrimination: the alternative “global method”

Finally, before concluding this section, we report the results obtained by a variant of the second method,
a global approach instead of a local one. Our global method is intended to provide bounds to source
density of UHECR by performing the comparison between the data and the models through maximum
values s⋆ns

= max{sns(Θ)}. For each value of the source density ns, we build 3 the distribution of s⋆ns

for testing the hypothesis that the value s⋆data, obtained from the data, is drawn from the distribution.
The adopted procedure is equivalent to that one adopted for the second local method, with the only
difference that the dependence on tha angular scale Θ vanishes. As an illustrative example, in Fig. 6.9

3For each sky S ∈ Mm(~v) a single value of s⋆ns
is obtained.
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we show the distributions of s⋆ns
for each source density in Tab. 6.1 in the case of the ISOHOM model

with Ethr = 55 EeV.

Model Ethr (EeV) Lower / Upper (10−4 Mpc−3)
2MASS 50 0.56/10

55 1.78/10
60 1.78/10

ISOHOM 50 0.32/10
55 0.32/10
60 0.56/10

Table 6.2: Bounds to source density obtained from the global method for 2MASS and ISOHOM models and different values
of the energy threshold.

In Tab. 6.2 we report the values obtained from the global method for the bounds to source density
in the case of 2MASS and ISOHOM models and for different values of the energy threshold. Strikingly,
although in the global method the information about the angular scale is lost, the results are in extraor-
dinary agreement with those ones obtained by using local methods, with the evident advantage of being
faster and to provide a single couple of bounds instead of many couples corresponding to each value of
Θ, for each configuration in the parameters space.

In Tab. 6.3 [298] we report the densities of candidate UHECR sources: our results provide further
evidence, at 95% confidence level, that AGN, GRB (gamma-ray burst) and dead quasar are suitable
astrophysical object accounting for the observed clustering in Auger data.

Density
Object (Mpc−3) Reference
AGN 0.1÷ 1× 10−4 Loveday et al. 1992;

Steffen et al. 2003
FR II radio galaxy 3× 10−8 Woltjer 1990
BL Lac 3× 10−7 Woltjer 1990
GRB 1× 10−4 Mao & Mo 1998
Dead quasar 5× 10−4 Boldt & Ghosh 1999
Colliding galaxy 7× 10−7 Smialkowski et al. 2002

Table 6.3: Densities of candidate UHECR sources [298].

6.1.5 Conclusion

We have considered different models of source distribution in the nearby universe (up to 250 Mpc).
With HERMES, we have simulated the production of high energy protons and their propagation in a
ΛCDM universe, building mock maps of events in the Auger sky. We have investigated the clustering
features of such events by varying the main parameters in this study, namely the density of sources and
the energy threshold of protons, by means of the novel multiscale autocorrelation function. We have
constrained the source density by using three different approaches: all methods are compatible with the
confidence interval 0.32 − 10 × 10−4 Mpc−3 at 95% confidence level, in agreement with previous and
more recent studies [303]. The given value of the upper bound is 1× 10−3 Mpc−3 although we can not
exclude higher densities because this value represents a limit for the MAF method, where clustering is
consistent with that one observed by chance.

162



6.2 Bounds on source density of UHECR and EMF with MAF

The main goal of the study presented in this section is to estimate the lower (and, eventually, upper)
bounds to the source density of UHECRs and to the extragalactic magnetic field (EMF), by using the
multiscale method (Chap. 4 and [278]). We will consider two toy models: one following the large scale
structure of matter and another one with uniformly distributed sources in the nearby universe, up to
200 Mpc. In any case, sources are assumed to be with uniform and equal luminosity, with a spectrum
whose injection index is 2.7 and producing only UHE protons or irons (i.e. no mixed composition has
been considered). The produced particles are successively propagated in a ΛCDM universe, taking into
account non-negligible energy-loss processes in the cosmic microwave and infrared background photon
fields. The effects of the irregular component of the EMF are taken into account through a smearing
procedure, as well as the effect of experimental uncertainty on the angular resolution. Moreover, we
have considered the cases where the irregular component of the galactic magnetic field (GMF) is also
taken into account.

For details concerning the source weighting and the completing procedure for the 2MRS catalog [301],
we refer to Sec. 6.1. The clustering analysis is performed by taking into account the Auger exposure.
The parameter space consists of the distribution of source, the density of sources from 10−6 Mpc−3 up to
10−3 Mpc−3, the EMF from 0.1 nG to 10 nG, the composition of UHECRs ((Z,A) = (1, 1) and (26, 56))
and the energy threshold of particles from 60 EeV to 80 EeV. In any case, equal intrinsic luminosity for
the sources is assumed. Auger data is used to constrain the source density and the EMF in different
astrophysical scenarios.

6.2.1 Simulation of magnetic fields

As we saw in Chap. 2, magnetic fields can be described by two components, a regular and an irregular
one. The regular component has the effect of bending the trajectories of charged particles, with the
typical deflection scale provided by the Larmor radius. In this work we do not take into account the
regular component. Conversely, the irregular component deals with the turbulent nature of the magnetic
field on scales much smaller than the Larmor radius. Such a turbulent component is described by a
r.m.s. strength B and a coherence length Λ, corresponding to the hypothesis that the power spectrum of
the irregular field has a cut-off in wavenumber space at k = 2π/Λ and in real space it is smooth on scales
below Λ [40]. For a propagation distance greater than Λ, and in the absence of a regular component,
the particle is randomly deflected with a spreading angle δ that follows the Fisher-von Mises probability
distribution described in Sec. 5.1 (random walk approximation). In the case of the GMF, the spreading
angle is given by

δGMF = 0.6◦Z
100 EeV

E

BGMF

4 µG

(
d

3 kpc

) 1
2
(

lc
50 pc

) 1
2

(6.1)

where BGMF is the strength of the irregular component of the GMF, lc is the corresponding coherence
length and d is the traversing distance of the UHECR [130]. In the case of the EMF, the smearing angle
is given by [40]

δEMF = 0.8◦Z
100 EeV

E

BEMF

1 nG

(
D(z)

10 Mpc

) 1
2
(

Lc

1 Mpc

) 1
2

(6.2)

where BEMF is the strength of the irregular component of the EMF, Lc is the corresponding coherence
length and D(z) ≈ zc/H0 ≈ 4258.4 z Mpc, if z ≪ 1 (it is worth remarking that in our study, we have
considered sources up to 200 Mpc, or, equivalently, z ≈ 0.047).
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We are interested in estimating the impact of irregular component of the EMF on the bounds of the
source density and for this reason we vary its strength from 0.1 nG up to 10 nG. The coherence length is
fixed to 1 Mpc. On the other hand, such an analysis for the GMF case should require a full propagation
code for estimating the traversing distance of the UHECR inside our galaxy. However, we are not
interested in achieving such a precision in this particular case and we use the rough approximation that
the average propagation distance in the galaxy is ∼ 4 kpc. Moreover, we fix the r.m.s. strength of the
irregular field to 10 µG and its coherence length to 150 pc. It follows that the spreading angle becomes

δGMF ≈ 3◦Z
100 EeV

E
(6.3)

Note. In the case of iron, the probability to get an event from a source takes into account
the photo-disintegration process and the possibility that a lighter fragment may reach the Earth, with
energy above the given threshold. However, when dealing with the smearing of the arrival direction,
because of the turbulent magnetic fields, we will assume that the nuclei are always irons. Such an
assumption is required because we do not perform a full propagation from the source to the Earth. In a
more realistic scenario the average deflection should be smaller than that one considered in our study.
However, we have estimated that our error has a negligible impact on the final result. For instance, for
Ethr = 60 EeV, the average mass of the fragment reaching the Earth is estimated to be 〈A〉 ≈ 46 4,
with a corresponding atomic number 〈Z〉 ≈ 23. The spreading angles are proportional to Z: it follows
that, on average, we overestimate the deflection when considering an iron nucleus instead of the “true”
fragment. Quantitatively, the overestimation factor is given by 26/〈Z〉 ≈ 1.13. The main consequence
of such an overestimation is reflected by an underestimation of the clustering signal, due to the larger
spreading angle, for angular scale within ∼ 30◦. In fact, above such a threshold, the MAF is not able to
discriminate the angular scale of clustering with accuracy. Moreover, such an angular scale is obtained
for fragments with Z ≥ 6, under the assumptions leading to Eq. (6.3) and for E = 60 EeV: it follows that
we really underestimate the clustering signal in those cases where the iron nuclei have been produced
by far sources (leading to an higher probability to have a fragment at Earth with Z < 6).

However, we have estimated that the probability, integrated over the distance, to have a fragment
with A < 12 is smaller than ≈ 1%, i.e. in practice our assumption will have a negligible impact on the
final results, with the great advantage of a smaller computation time required by simulations.

Experimental uncertainty

In order to take into account the experimental uncertainty on the angular resolution, we apply an addi-
tional smearing to the arrival directions of simulated events with spreading angle δσ ≈ 0.8◦, according
to the resolution of the Pierre Auger Observatory at the energy considered in this study. Thus, for a
given astrophysical scenario, the total smearing angle is

δ =
√
δ2GMF(E;Z) + δ2EMF(z, E;Z) + δ2σ (6.4)

6.2.2 Clustering analysis of simulated sky maps and Auger data

We analyze the mock maps of events generated from catalogues corresponding to configurations in
Tab. 6.1, for both 2MRS and ISOHOM models. We investigate the ability of MAF to discriminate
among different source densities and EMFs. The comparison with results obtained from Auger data
is also discussed. For the sake of completeness, we use the official data set of Auger events up to 25

4Such an information has been deduced from Fig. 7 in Ref. [171].
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January 2011 with standard quality cuts for anisotropy studies and energy E ≥ Ethr. Moreover, in the
case of 2MRS model only Auger events with |b| ≥ 10◦ are considered.

Source density discrimination: the “global method”

For any catalog corresponding to a particular set of parameters in the parameter space, we build a
large mock map Mm(~v) of skies, where m = 2MRS, ISOHOM and ~v is a vector in the parameters
space corresponding to a particular choice of parameters. The size of each sky in the mock map is fixed
by the number of Auger events with E ≥ Ethr (and, in the case of 2MRS, falling outside the mask
|b| < 10◦). In Sec. 6.1 we have proposed a global method to discriminate among models. Our global
method is intended to provide bounds to source density of UHECR, as a function of the EMF r.m.s.
strength B, by performing the comparison between the data and the models through maximum values
s⋆ns

= max{sns(Θ)}. For each value of the source density ns and of B, we build the distribution of s⋆ns

for testing the hypothesis that the value s⋆data, obtained from the data, is drawn from the distribution.
The adopted procedure is equivalent to that one adopted for the second local method in the previous
section, with the only difference that the dependence on the angular scale Θ vanishes. See Sec. 6.1 for
further detail.

Results obtained by assuming protons, GMF and EMF

As an illustrative example of the global method, in Fig. 6.13 we show the distributions of s⋆ns
for each

probed source density in the case of the ISOHOM model. Protons with Ethr = 60 EeV are used and
the smearing due to both the GMF and EMF is considered. In Fig. 6.14 we show the distributions
obtained under the same assumptions, but in the case of the 2MRS model. It is evident that increasing
the irregular component EMF has a small effect on the distribution of the clustering coefficient, when
protons are considered. However, this result is not surprising. In fact, only the closest sources are
significantly responsible of the clustering signal in the arrival direction distribution of UHECRs, because
of the energy-loss processes. Moreover, the spreading angle due to the deflections in the irregular GMF
is always the same (∼ 5◦) and the deflections due to the irregular EMF (e.g. for a propagation distance
D ≈ 10 Mpc) span from 0.1◦ to 10◦. Over such a range of angular scales, the MAF is very sensitive to
the clustering signal, that does not significantly change its strength but only its location [278].

In Fig. 6.15 we show the results obtained for the lower bounds (99% CL) on the source density, as a
function of the irregular EMF r.m.s. strength, for both ISOHOM (left panel) and 2MRS (right panel)
models, in the case of protons with two different energy thresholds (60 and 80 EeV). The cases where
the GMF and the EMF are both considered, and where only the EMF is taken into account, are shown.

It is evident that lower bounds do not significantly depend on B in any configuration considered here.
In all cases, the values of the bounds on the density decrease for increasing spreading angles. In fact,
by fixing an energy threshold, limits are the smallest in the GMF+EMF case (maximum spreading),
followed by the EMF case (medium spreading) and the null magnetic field case (no spreading). On
the other hand, for a fixed configuration of the magnetic field, limits decrease for increasing energy
thresholds, reflecting the fact that the clustering signal is higher for smaller values of the energy, where
the number of events (and, of course, the statistical power) is higher. Results are the same for both
ISOHOM and 2MRS models, even if bounds on the source density are higher of a factor ∼ 2 for the
latter.

Results obtained by assuming protons, irons and EMF

In Fig. 6.16 we show the maximum clustering s⋆ns
as a function of the source density and the strength of

irregular component of the EMF (the GMF is not considered here). UHECRs are protons (left panel)
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Figure 6.13: Distributions of s⋆ns
for each probed source density in the case of the ISOHOM model with Ethr = 60 EeV.

UHECRs are protons and both GMF and EMF are considered. The solid line indicates the value s⋆data

obtained from the Auger data. For the highest value of the source density, s⋆ns
tends to be the lowest;

viceversa, for the lowest value of the source density, s⋆ns
tends to be the highest: thus, histograms are ordered

from the highest to the lowest source density from left to right. The (properly penalized) chance probability
corresponding to smax is reported in top x−axis for reference. The upper panel is for B = 0.1 nG, whereas
in the lower panel B = 10 nG.

Figure 6.14: Same as in Fig. 6.13 but assuming the 2MRS model for the distribution of sources.

and irons (right panel) with Ethr = 60 EeV, produced within the 2MRS model. It is evident that there
is a non-significant dependence on B only in the case of protons.

In Fig. 6.17 we show the distributions of s⋆ns
for each probed source density in the case of the ISOHOM

model. Protons with Ethr = 60 EeV are used and only the smearing due to EMF is considered. The
main effect of removing the GMF is a higher clustering signal and a more precise discrimination among
different values of the source density. Again, the effect of increasing the strength of the irregular EMF
is small and does not influence the estimation of the lower bound. In Fig. 6.18 we show the distributions
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Figure 6.15: 99% CL lower bounds on the source density as a function of the irregular component of the EMF r.m.s.
strength, for ISOHOM (left panel) and 2MRS (right panel) models. UHECRs are protons with Ethr = 60
and 80 EeV. Dashed and short-dashed lines correspond to the estimated values in the limit of null magnetic
field and Ethr = 60 and 80 EeV, respectively.

Figure 6.16: Maximum clustering s⋆ns
as a function of the source density and the strength of irregular component of the

EMF. UHECRs are protons (left panel) and irons (right panel) with Ethr = 60 EeV, produced within the
2MRS model.

obtained under the same assumptions, but in the case of irons. At variance with the case of protons, a
more significant difference between distributions corresponding to the highest source density is present,
and the clustering signal is reduced.

Such differences are more evident in Fig. 6.19, where results obtained for the lower bounds (99% CL)
on the source density, as a function of the irregular EMF r.m.s. strength, are shown for both ISOHOM
and 2MRS models, in the case of protons (left panel) and of irons (right panel), with energy threshold
equal to 60 EeV.

Results are compatible with those ones reported in Sec. 6.1, with bounds of the order of ∼ 10−4 Mpc−3

for softer EMFs (corresponding to deflections smaller than 15◦) and of the order of ∼ 10−5 Mpc−3 (or
lower) for stronger EMFs.

In Tab. 6.3 [298] we report the densities of candidate UHECR sources: our results provide further
evidence, at 99% confidence level, that AGN, GRB (gamma-ray burst) and dead quasar are suitable
astrophysical objects accounting for the observed clustering in Auger data, even if mass composition and
magnetic fields are taken into account. Even in the more extreme cases, candidate sources with density
smaller than 10−6 Mpc−3 are excluded, unless very exotic scenarios get involved. However, it is worth
remarking that we have obtained our results after making several assumptions on the magnetic fields
involved, and it should be considered as a naive exercise for exploring more complicated astrophysical
scenarios than those investigated in our previous studies, where only light composition and no magnetic
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Figure 6.17: Same as in Fig. 6.13, but excluding the smearing due to the GMF. UHECRs are protons with Ethr = 60 EeV.

Figure 6.18: Same as in Fig. 6.17 but assuming that UHECRs are iron nuclei in the 2MRS scenario.

fields are considered.

6.2.3 Conclusion

We have considered different models of source distribution in the nearby universe (up to 200 Mpc) and
we have simulated the production of high energy protons and irons and their propagation in a ΛCDM
cosmology. The deflections due to different configurations of galactic and extragalactic magnetic fields
(only the turbulent component) have been taken into account, and mock maps of events in the Auger
sky have been built by varying the values in the parameter space.

Successively, we have investigated the clustering features of such events, for different density of
sources, magnetic field strength and energy threshold of UHECRs, by means of the novel multiscale
autocorrelation function and by including the effects of the experimental uncertainty on the angular
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Figure 6.19: 99% CL lower bounds on the source density as a function of the irregular component of the EMF r.m.s.
strength, for ISOHOM and 2MRS models. UHECRs are protons (left panel) and irons (right panel) with
Ethr = 60 EeV. Dashed and short-dashed lines correspond to the estimated values in the limit of null magnetic
field for ISOHOM and 2MRS models, respectively.

resolution. Thus, we have investigated the dependence on the EMF of the source density, providing
lower bounds for several different astrophysical scenarios at 99% CL.

We have found that the main effect of including an explicit treatment of deflections due to the
magnetic field is to decrease the lower bound on the density of sources. Such results are in agreement
with those ones reported in the previous section and in Ref. [303]. By increasing the strength of the
field, deflection angles get larger further reducing the clustering signal. Moreover, we have found that
such bounds decrease for increasing energy thresholds of UHECRs. For all configurations investigated
within this study, we have observed that bounds increase if the distribution of sources is not isotropic.

Finally, for any given set of parameters we have found that lower bounds on the source density do
not depend on the strength of the magnetic field if the composition is light, i.e. for protons. Conversely,
for heavier nuclei lower bounds decrease in the case of stronger magnetic fields, with differences of more
than one order of magnitude between the limit of a null field and a r.m.s. strength of the irregular
component of the EMF of ∼ 10 nG.

The provided values of the upper bounds are 1× 10−3 Mpc−3, although we can not exclude higher
densities because this value represents a limit for the MAF method, where clustering is consistent with
that one observed by chance. Our results suggest that, even in the more extreme cases, candidate
sources of UHECRs with density smaller than 10−6 Mpc−3 are excluded, unless very exotic scenarios
get involved.

6.3 Can nearby black holes be sources of UHE protons?

In the previous sections, bounds on the source density of UHECRs in the nearby universe (up to 250
Mpc) have been estimated by investigating the clustering signal in their arrival direction distribution,
in absence or in presence of the extragalactic magnetic field. The lower bound on the source density has
been constrained by using three different approaches: all methods are compatible with the confidence
interval 0.32− 10× 10−4 Mpc−3 at 95% CL, in agreement with previous studies in literature. The given
value of the upper bound is 1 × 10−3 Mpc−3 although higher densities can not be excluded because
this value represents a limit for the multiscale autocorrelation function (MAF) method [278], where
clustering is consistent with that one observed for an isotropic sky.

As we will see in the following, the density of black holes and their luminosity are a function of their
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Figure 6.20: Skymap of massive black holes within ≈ 106 Mpc [304, 305] and 78 UHECRs detected by the Pierre Auger
Observatory from 1 January 2004 to 9 September 2011 (blue squares indicate events with 60 ≤ E/EeV < 80,
whereas red triangles indicate events with E ≥ 80 EeV). Aitoff projection of equatorial coordinates is shown.

mass, under some astrophysical assumptions. The main goal of the present study is to estimate the lower
(and, eventually, upper) bounds to the density of black holes, under the hypothesis that they are the
sources of UHECRs, and to discuss the dependence of such bounds on the extragalactic magnetic field
(EMF), by using the MAF. We consider the whole catalog of black holes (within ≈106 Mpc) that have
been recently reported by Caramete and Biermann [304, 305]. One of the most interesting features of
such a catalog, among others, is its completeness in the whole sky, which makes it suitable for clustering
studies related to an underlying distribution of sources.

The intrinsic luminosity of sources is taken into account and a power-law injection of protons with
spectral index 2.4 is considered. The produced particles are successively propagated in a ΛCDM universe,
taking into account non-negligible energy-loss processes in the cosmic microwave background (CMB)
photon field. The effects of the irregular component of the EMF are taken into account through a
smearing procedure, as well as the effect of experimental uncertainty on the angular resolution.

Auger data is used to constrain the black hole density and the EMF in different astrophysical
scenarios, and the clustering analysis is performed by taking into account the Auger exposure. The
parameter space consists of the black hole mass, ranging from 106.5M⊙ to 109.25M⊙, the r.m.s. strength
of the EMF, ranging from 0 nG to 10 nG, and the energy threshold of particles at Earth, namely 60 EeV
and 80 EeV. The simulation of propagating protons has been described in detail in previous chapters
and will not be discussed in the study.

In the analysis presented here we adopt two different approaches for the investigation of clustering:
a global method, making use of the maximum clustering signal as a test statistic, and a local method,
making use of the clustering signal at any angular scale.

6.3.1 Data selection

The catalog of black holes adopted for our study has been recently shown in Refs. [304, 305] and repre-
sents an unbiased sample of about 6000 black holes within the local Universe (∼ 106 Mpc). The catalog
has been built by starting from the 2 Micron All Sky Survey (2MASS) and it is complete if the region
within 10◦ along the Galactic plane is excluded. In our study, we consider black holes with mass ranging
from 106.5M⊙ to 109.25M⊙.

We use 78 UHECR events with E ≥ 60 EeV detected by the Pierre Auger Observatory from 1 January
2004 to 9 September 2011, selected with standard quality cuts for anisotropy studies. In Fig. 6.20 we
show the skymap of massive black holes in the catalog together with UHECR events used in our study.
UHECRs in the region |b| < 10◦ are excluded from the present study: the number of events surviving
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Figure 6.21: Integral number density ns of nearby black holes as a function of their mass M ≥ MBH.

Figure 6.22: Density of 105 simulated protons emitted from nearby black holes with mass M ≥ MBH and propagated in the
extragalactic magnetic field with r.m.s. strength BEMF. Top: Cases with no magnetic field, MBH = 107M⊙

(left) and MBH = 108.5M⊙ (right). Bottom: Same of top panels but with BEMF = 1 nG. In any case, the
angular uncertainty of the Pierre Auger Observatory is taken into account through a smearing of δσ = 0.8◦.

to such a cut is 59 for E ≥ 60 EeV (squares) and 18 for E ≥ 80 EeV (triangles).
In Fig. 6.21 we show the dependence of black holes on the mass below a given threshold MBH and

their number density ns. Thus, by estimating the lower (upper) bounds on the density, we indirectly
constrain the mass of black holes, whose distribution in the sky should account for the arrival direction
distribution of UHECRs observed at Earth.
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6.3.2 Simulation of UHECRs

Sources and protons

As seen in Chap. 2 and 3, UHECRs with injection energy Ei, are subjected to several effects during
their propagation and they are detected with a degraded energy Ef < Ei, depending on the interactions
they experienced and on the distance of the source. Thus, the probability to get an event from a source
at redshift z is proportional to Lz−2ω(z, Ethr) (defined by Eq. 3.60), being L the intrinsic luminosity of
the source.

The available channels for the interactions depend on the particle and on the background radiation.
In this analysis we will consider only protons. If ǫ is the energy of the ambient photon field and E is
the energy of an UHECR in the observer’s rest frame, the energy ǫ′ of the photon in the proton rest
frame is given by ǫ′ = 2Γǫ, if head-on collisions are assumed. Here, Γ = E/mpc

2 is the Lorentz factor of
the proton. In the case of proton the available channels above the threshold for single pion production
(ǫ′ ≈ 145 MeV) involve baryonic resonances and direct particle production, with multi-pion production
playing a significant role at the highest energies (ǫ′ > 700 MeV). The energy losses due to the pair
production and to the adiabatic expansion occur in any case, with significant contributions only in a
small range of energies. For the energies of interest for the present study, only the cosmic microwave
background is relevant for protons.

The probability that an UHECR, with injection energy greater or equal than Ei, reaches the Earth
with energy Ef ≥ Ethr, after taking into account the effects due to the energy-loss processes and the
power-law injection spectrum at the source, is given by

ω(z, Ethr) =
s− 1

E−s+1
thr

∫ ∞

Ei(z,Ethr)
E−sdE, (6.5)

where s is the injection index. Cosmology is implicitly included in the term Ei (z, Ethr) (see Sec. 3.6): in
the following we assume the updated ΛCDM model parameters (Ωb = 0.0456, Ωc = 0.227, ΩΛ = 0.728
and H0 = 70.4 km/s−1/Mpc) [141] and s = 2.4.

Thus, the probability to get an event from a source at redshift z is proportional to z−2L(z)ω(z, Ethr),
where L(z) indicates the evolved luminosity of the black hole. In the present study, we consider the
case of no evolution (L(z) = L0(MBH)) and a luminosity which depends on the black hole mass. In
fact, an astrophysical object of mass M which is powered by spherical accretion provides at most a
luminosity LEdd = 1.26× 1038(M/M⊙) erg s−1, i.e. the Eddington luminosity. If sources in our catalog
are considered in the Blandford-Znajek mode, providing a mechanism for the extraction of energy from
a rotating black hole [306], the resulting luminosity will be

LBH(MBH) ∝ 10−2.5LEdd ∝ MBH

M⊙
. (6.6)

Magnetic fields

The simulation of magnetic fields follows the same procedure described in Sec. 6.2. Here, the EMF
is assumed to be dominated by an irregular component characterized by a r.m.s. strength B and a
coherence length ℓ.

We are interested in estimating the impact of deflections on our study and for this reason we vary the
r.m.s. strength of the EMF from 0 nG up to 10 nG, while keeping fixed Lc to 1 Mpc. Moreover, in order
to take into account the experimental uncertainty on the angular resolution, we apply an additional
smearing to the arrival directions of simulated events with spreading angle δσ ≈ 0.8◦, according to
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Figure 6.23: Top and bottom-left panels: Average clustering curve (solid line) with 68% and 95% dispersion bands
obtained from simulations in the absence of the extragalactic magnetic field, as a function of black hole mass
MBH and angular scale Θ. The dashed line indicates the clustering measured in the data, in the case of
Ethr = 80 EeV. Bottom-right panel: 95% lower and upper bounds on MBH as a function of the angular
scale.

the resolution of the Pierre Auger Observatory at the energy considered in this study. Thus, the total
expected deflection angle is given by

δ(E, z) =
√
δ2EMF(E, z) + δ2σ. (6.7)

In Fig. 6.22 we show the density skymap for four realizations of 105 simulated protons emitted from
nearby black holes with mass M ≥MBH, with MBH = 107M⊙ (left panels) and MBH = 108.5M⊙ (right
panels). Protons are then propagated by switching off (top panels) and switching on (bottom panels)
the EMF.

Astrophysical assumptions

We have discussed above the simulation setup adopted for the present study. However, it is worthwhile
concluding this part by remarking some limitations of this work, before discussing the analysis and the
results. We are assuming i) a pure composition of protons propagating in a turbulent EMF and ii) that
black holes in the catalog are the sources of such UHE particles. The implicit assumptions behind such
considerations are numerous.

In fact, the distribution of matter in the limited volume of space considered in our study (≈ 106 Mpc3)
should have an impact on the intergalactic magnetic field, which in turns is expected to be structured
inside and around clusters or groups of galaxies, with filaments extending over few Mpc, as shown, for
instance, in recent detailed simulations [107]. The topology of such a structured magnetic field has a
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non-negligible impact on the trajectories of UHE protons and, of course, on the average deflections they
experience in the case of EMF with regular structures above 200 kpc [202]. If UHECRs are heavy nuclei,
the impact of such regular field on their propagation could be even more dramatic.

Additionally, longitude-averaged X-ray emission observed with ROSAT near 0.65 keV and 0.85 keV
towards the center of the Galaxy, are in agreement with a Galactic wind thermally-driven by cosmic
rays and hot gas [203, 204], whose irregular magnetic field can also explain the isotropy of UHECR
below 60 EeV observed with the Pierre Auger Observatory [89, 208]. In our study, we can neglect the
effect of such a magnetic wind only in the case of protons above 60 EeV, because it is expected to have
a non-negligible impact for protons below 60 EeV or heavier nuclei. Some of such limitations have been
recently discussed, for instance, in Ref. [307].

It is evident that an explicit treatment of the mass composition would considerably complicate the
simulations, and we reserve the exploration of such a case, together with the treatment of scenarios
involving structured magnetic fields, for future works.

6.3.3 Clustering analysis of simulated sky maps and Auger data

In this section we analyze the mock maps of events generated from the catalog of black holes, as
previously discussed. First, we briefly discuss the global and local methods used for clustering analysis
(see Sec. 6.1 for further detail.). Successively, we investigate the ability of MAF to discriminate among
different source densities (or black hole masses) and EMFs. The comparison with results obtained from
Auger data is also discussed. In the following, we will simply refer to the black hole mass threshold MBH

to indicate all black holes with mass M ≥ MBH, where not otherwise specified. It is worth remarking
that we will use equivalently the terms “black hole mass” and “source density” because of relation in
Fig. 6.21, in order to indicate the number density of black holes with mass M ≥MBH.

Description of the local method adopted for the analysis

The local method we apply to constrain the source density of UHECR is the same adopted in Ref.
[300, 308]. First, for each angular scale Θ separately, the mean clustering 〈s(Θ)〉 (with 68% and 95%
regions around it) is estimated for each black hole mass (or, equivalently, for each value of the source
density): the result is an average clustering curve with dispersion bands vs MBH, as shown in the first
three panels of Fig. 6.23, in the case BEMF = 0 nG, Ethr = 80 EeV, Θ = 6◦, 12◦ and 26◦. Successively,
we estimate the value of MBH where such a curve and the clustering value obtained from the data at
the angular scale Θ lie across each other. The same estimation is thus employed by using the curves
corresponding to the upper and the lower dispersion bands. The result is shown in the fourth panel
of Fig. 6.23: the region is obtained by using upper and lower 95% dispersion bands for the black hole
mass, for each value of the angular scale Θ separately. In Fig. 6.24 we show curves as in Fig. 6.23 but
for different magnetic fields intensity, at the angular scale Θ = 6◦, for both Ethr = 60 EeV (top panels)
and 80 EeV (bottom panels). At 60 EeV, the data is not compatible at 95% CL with simulation for
BEMF ≤ 2.5 nG, whereas it is only partially compatible for increasing EMF strength. At 80 EeV, the
data is in good agreement with simulation with almost no regard for the EMF. A discussion about the
lower bounds on MBH as a function of the EMF will be provided further in the text.

Description of the global method adopted for the analysis

For any catalog corresponding to a particular set of parameters in the parameter space, we build a large
mock map M(~v) of skies, where ~v is a vector in the parameter space corresponding to a particular
choice of parameters. The size of each sky in the mock map is fixed by the number of Auger events with
E ≥ Ethr and |b| ≥ 10◦. In Ref. [308] we have proposed a global method to discriminate among models.
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Figure 6.24: Average clustering curve (solid line) with 68% and 95% dispersion bands obtained from simulations at an
angular scale Θ = 6◦ and for different magnetic fields intensity, as a function of black hole mass MBH. The
dashed line indicates the clustering measured in the data. Top: Ethr = 60 EeV. Bottom: Ethr = 80 EeV.

Figure 6.25: Distributions of s⋆MBH
for each probed black hole mass MBH, in the case of protons with Ethr = 60 EeV

propagating in the absence of magnetic field (left) and in EMF with strength 10 nG (right). The vertical
solid line indicates the value s⋆data obtained from the Auger data. For the highest value of the source density,
s⋆MBH

tends to be the lowest; viceversa, for the lowest value of the source density, s⋆MBH
tends to be the

highest: thus, histograms are ordered from the highest to the lowest source density from left to right. The
(properly penalized) chance probability corresponding to smax is reported in top x−axis for reference.

Such a method is intended to provide bounds to source density of UHECR, as a function of the r.m.s.
strength BEMF of the EMF, by performing the comparison between the data and the models through
maximum values s⋆MBH

= max{sMBH
(Θ)}. For each value of the black hole mass MBH and of BEMF, we

build the distribution of s⋆MBH
for testing the hypothesis that the value s⋆data, obtained from the data,

is drawn from the distribution.
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Figure 6.26: Multiscale autocorrelation of UHECRs with E ≥ 60 EeV (upper panels) and E ≥ 80 EeV (lower panels). It is
shown the maximum clustering signal, as a function of the black hole mass threshold, expected from simulated
sky maps (solid lines) with the corresponding dispersion bands (shaded areas) and the signal estimated from
the data (dashed lines). Left panels: EMF is switched off. Right panels: BEMF = 10 nG is considered.

Constraining the black hole mass with the local and global method

Global approach. As an illustrative example of the global method, in Fig. 6.25 are shown the distribu-
tions of s⋆ns

for each probed black hole mass MBH (i.e. source density). Protons with Ethr = 60 EeV are
considered, as well as the case with no magnetic field (left panel) and BEMF = 10 nG (right panel). It is
evident that in our astrophysical scenario, the increase of the EMF intensity is responsible of decreasing
the clustering coefficient, reducing its strength. In such a particular case, scenarios with no EMF are
excluded with high CL.

Hence, we estimate the maximum clustering signal, as a function of MBH, expected from simulated
sky maps (with the corresponding 1σ, 2σ and 3σ dispersion bands) and from the data. In Fig. 6.26 we
show the results for scenarios including the EMF with strength BEMF = 10 nG (right panels) or no
EMF (left panels), for Ethr = 60 EeV (upper panels) and Ethr = 80 EeV (lower panels). The global
method provides only a rough indication of the black hole mass compatible with the data: in fact,
provided confidence bands do not allow, in general, a definitive and significant conclusion. Only for
Ethr = 60 EeV, scenarios with small or vanishing EMF are disfavored.

Local approach. The bounds estimated with the local approach and shown in Fig. 6.23 for a
particular scenario, should be interpreted with caution. In fact, when the EMF is switched off, we are in
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Figure 6.27: Lower bounds on the black hole mass (as in bottom-right panel of Fig. 6.23) for some different scenarios,
namely with BEMF = 0, 1 and 10 nG and with Ethr = 60 (left) and 80 EeV (right), as a function of the
angular scale.

the same hypotheses of a recent similar analysis [303], where the angular scale Θ can be interpreted as
the deflection due to intervening (unknown) magnetic fields, e.g. EMF and Galactic one. In this case the
estimated bounds apply if the deflections of CR trajectories by magnetic fields do not erase the clustering
properties expected from the models at the angular scales considered. If we switch on the EMF, thus
including an explicit treatment of the magnetic field, the estimated bounds apply if the deflections of
CR trajectories by galactic magnetic field are compatible with the angular scales considered. In Fig. 6.27
we show the lower bounds for some different scenarios, namely with BEMF = 0, 1 and 10 nG and with
Ethr = 60 and 80 EeV, as a function of the angular scale. The global effect of increasing the EMF
is to provide less stringent lower bounds, at any angular scale. Such bounds range from ≈ 107M⊙ to
≈ 109M⊙ in the majority of cases, corresponding to a source density of 0.06 − 10 × 10−4 Mpc−3 at
95% CL, in agreement with previous studies [285, 308]. It is worth noticing that for Ethr = 80 EeV
and weak EMF, the bounds are globally stable with respect to the angular scale, fluctuating around
108.5 − 108.75M⊙, corresponding to a source density of 0.4− 1× 10−4 Mpc−3 at 95% CL.

We have also estimated the average clustering signal, as a function of both the black hole mass and
the angular scale, expected from simulated sky maps, and the clustering signal from the data. We expect
more robust constraints on the allowed values of MBH with respect to the global method because the
whole information about the distribution of Θ is taken into account.

In Fig. 6.28 we show the results for BEMF = 0 nG (left panel) and BEMF = 10 nG (right panel)
scenarios, with Ethr = 60 EeV. In order to compare such results with the data, we make use of the χ2

statistics defined by

χ2
MBH

=
∑

Θ

[sdata(Θ)− 〈sMC(Θ;MBH)〉]2
σMC(Θ;MBH)

(6.8)

where sdata(Θ) is the clustering signal estimated from the data, 〈sMC(Θ;MBH)〉 is the average cluster-
ing signal obtained from a scenario with a black hole mass threshold MBH and σMC(Θ;MBH) is the
corresponding dispersion.

In Fig. 6.29 are shown the values of the reduced χ2 as a function of the black hole mass threshold for
scenarios with different values of the EMF intensity. The mass M⋆

BH where the χ2 gets a minimum is the
most compatible with the observed clustering. We find that scenarios with M > 108.5M⊙ (corresponding
to a source density of ≈ 0.4×10−4 Mpc−3) are disfavored for Ethr = 60 EeV. At higher energy threshold,
the data is compatible with simulation with almost no regard for the EMF strength if M < 108.25M⊙,
whereas for M < 109M⊙ only scenarios with strong EMF are allowed.
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Figure 6.28: Multiscale autocorrelation of UHECRs with E ≥ 60 EeV. It is shown the average clustering signal expected
from simulated sky maps of protons, as a function of both the black hole mass and the angular scale. Scenarios
with BEMF = 0 nG (left) and BEMF = 10 nG (right) are considered.

Figure 6.29: Reduced χ2 statistics as a function of the black hole mass threshold, for different scenarios with BEMF ranging
from 0 to 10 nG, and for different energy threshold of protons, namely 60 (left) and 80 EeV (right).

Figure 6.30: Fraction of UHE proton flux due to black holes with mass smaller than M , for different energy threshold
of protons, namely 60 and 80 EeV. The 95% of the contribution to the flux is due to black holes with mass
above ≈ 107.3M⊙.

It is worth noticing that a direct comparison with results reported in the previous sections (as well
as in [303, 308] is not possible. In fact, the underlying assumption of those results include an equal
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intrinsic luminosity of sources, whereas in the present work we have considered the dependence on the
luminosity, which in turns depends on the black hole mass. Hence, heavier black hole provides a greater
flux of protons and it should be remarked that the density of such objects decreases for increasing mass:
such a behavior should have a non-negligible impact on the the effective density of sources. Let

Ω(z,M ;Ethr) = L(z,M)z−2ω(z, Ethr) (6.9)

be the probability that a black hole with mass M at distance z produces a UHE proton with energy
above Ethr at Earth. In general, L(z,M) ∝ (1+z)mLBH(M), where m is the evolution index. Under our
hypothesis, m = 0 and LBH ∝ M . If n(z,M ′)dz dM ′ is the number of black holes with mass between
M ′ and M ′ + dM ′, with distance between z and z + dz, the fraction of the flux Φ of UHECR that is
produced by black holes with mass smaller than M , is given by

fΦ(M ;Ethr) =

∫ z1
z0

∫M
M0

dz dM ′ n(z,M ′)Ω(z,M ;Ethr)
∫ z1
z0

∫M1

M0
dz dM ′ n(z,M ′)Ω(z,M ;Ethr)

,

where the subscripts 0 and 1 indicates the lowest and highest values in the dataset, respectively. The
flux fraction fΦ(M ;Ethr) is shown in Fig. 6.30 for both energy thresholds considered in this study: it is
evident that black holes with mass below 107.3M⊙ do not contribute significantly (less than ≈ 5%) to
the total flux of protons. Such a result, together with the previous one, suggest that only black holes
with mass larger than MBH, with 107.3 < MBH/M⊙ < 108.75 are responsible for the observed clustering
in the data

6.3.4 Conclusion

Within this study we have found that the mass of black holes plays an important role in anisotropy
analysis. In fact, the luminosity of black holes is proportional to their mass, as well as the density
of such objects in the nearby Universe, and both quantities have a direct impact on the clustering of
UHECRs.

By varying the black hole mass threshold, we have built mock maps corresponding to different dis-
tribution of sources (up to ≈100 Mpc) and we have simulated the production of high energy protons
and their propagation in a ΛCDM cosmology. The deflections due to different intensity of the turbu-
lent extragalactic magnetic field have been taken into account, as well as detection effects as angular
uncertainty and exposure of the Pierre Auger Observatory.

Successively, we have investigated the clustering features of such skymaps of events, for different
density of sources (i.e. black hole mass threshold), magnetic field strength and energy threshold of
UHECRs, by means of the novel multiscale autocorrelation function. Thus, we have estimated the lower
bounds to black hole mass threshold for different astrophysical scenarios at 95% CL.

We have found that the main effect of including an explicit treatment of deflections due to the
magnetic field is to decrease the lower bound on the density of black holes. Such results are in agreement
with those ones reported in Ref. [303]. Finally, by assuming that nearby black holes are sources of UHE
protons, our study constrain the minimal mass of such objects to be of the order of 108 − 109M⊙,
corresponding to a source density of the order 0.06− 5× 10−4 Mpc−3 at 95% CL. However, it is worth
remarking that in the case of higher energy threshold of protons at Earth, namely 80 EeV, the data is
more compatible with simulations, even if the impact of the small statistic on this result at such energy
is non-negligible. Moreover, scenarios with strong EMF are favored if the considered black holes are
assumed to be the only sources of UHECRs.

Our results suggest that, even in the more extreme cases, black holes with mass smaller than ≈
107.3M⊙ or larger than ≈ 108.75M⊙ are unlikely to be the only sources of UHE protons. Conversely,
black holes with mass larger than MBH, with 107.3 < MBH/M⊙ < 108.75 are candidate sources of UHE
protons observed at Earth above 60 and 80 EeV.
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(a) Veron-Cetty-Veron 12th ed. catalog of AGN,
QSO and BL Lac.

(b) SWIFT-BAT 39-month catalog of Seyfert galax-
ies, blazars, QSO, and unclassifed AGN.

Figure 6.31: Candidate sources (small dots of different colors are used according to redshifts: z < 0.018, z < 0.024 and
z < 0.047) and Pierre Auger Observatory data (black and purple big dots). Equatorial coordinates are shown.

6.4 Influence of catalogues on the correlation between UHECRs and

AGN

Within this work, we apply our multiscale procedure to Pierre Auger Observatory data (up to Dec. 2009)
and catalogues of sources, to investigate the influence of the choice of the catalog on the correlation
between UHECRs and AGN. In our analysis, we consider two catalogues of nearby candidate sources
at different redshift (z < 0.018, z < 0.024, z < 0.047): Veron-Cetty-Veron 12th ed. [238] (VCV) and
SWIFT-BAT 39-month [268, 297] (SWIFT). These catalogues have been used in other Auger analysis
[89].

We consider the first 27 events with energy E ≥ 56 EeV used in [208] and the 69 updated events
(corresponding to the so-called Period I+II+III, see Sec. 5.2) with energy E ≥ 55 EeV [89] detected by
the Pierre Auger Observatory.

Sources with known redshift z < 0.018 (75 Mpc), z < 0.024 (100 Mpc) and z < 0.047 (200 Mpc)
have been considered separately. In particular, AGN, QSO and BL Lac from the VCV catalog (Fig.
6.31a), and Seyfert galaxies, blazars, QSO, and unclassifed AGN from the SWIFT catalog (Fig. 6.31b),
have been taken into account.

VCV Catalog. The chance probability for the correlation between Auger data and objects from
the VCV catalog is shown in Fig. 6.32.

By using the first 27 events (see Ref. [208]) we find an evidence for correlation in great agreement
with Auger published results [88]: ∼ 3.5σ for Θ⋆ ≈ 2.75◦ and ∼ 2.9σ for Θ⋆ ≈ 3.08◦, and sources within
75 Mpc.

Results for Period II and Period II + III (see Ref. [89]) show a less significant (but still present)
correlation, at the same angular scales of the previous analysis.

Finally, by using Period I + II + III (corresponding to all of the 69 events in Ref. [89]), we found
∼ 2.6σ evidence for correlation when Θ⋆ ≈ 2.32◦, again for sources within 75 Mpc. Such results are
consistent with the official analysis reported by the Pierre Auger Collaboration.

SWIFT Catalog. We perform the same analyses to investigate the correlation between Auger data
and objects from the SWIFT catalog: results are shown in Fig. 6.33.

By using the 27 events we find a strong evidence for correlation: up to ∼ 3.9σ for 2.20◦ < Θ⋆ < 4.00◦

and Θ⋆ ≈ 4.86◦, 7.81◦, 10.19◦. Results are similar for both sources within 75 and 100 Mpc.
Results for Period II are still significant (up to ∼ 3.9σ) for 2.50◦ < Θ⋆ < 3.38◦ and Θ⋆ ≈
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Figure 6.32: MCF: chance probability for cross-correlation between VCV catalog (varying redshift) and Auger data (vary-
ing periods). Solid straight line is the reference for P = 1%.

Figure 6.33: MCF: chance probability for cross-correlation between SWIFT catalog (varying redshift) and Auger data
(varying periods). Solid straight line is the reference for P = 1%.

4.86◦, 6.76◦, 10.19◦, for sources within 75 and 100 Mpc.
For Period II + Period III the most significant angular scale is 2.53◦, with 2.9σ of evidence, for

sources within 75 and 100 Mpc.
Finally, by using Period I + II + III, we found up to ∼ 3.1σ evidence for correlation when 2.25◦ <

Θ⋆ < 3.08◦, again for sources within 75 Mpc and 100 Mpc.

Conclusion

We find evidence for correlation at different angular scales with both VCV and SWIFT catalogues, in
agreement with results from other Auger analyses [88, 309, 310]. We get different evidence of correlation
when using different data sub-sets (i.e periods) and the two catalogues. From our analyses, objects
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within 75 Mpc and 100 Mpc are favorite candidate sources.
Angular scales ranging from 2◦ to 4◦ are, in general, statistically more significant than other ones.

In the case of the SWIFT catalog, other interesting scales, ranging from 6◦ to 10◦, emerge. It is
worth remarking that Period III acts as an uncorrelated background of events, diluting the amount of
correlation with both catalogues.

In addition, we note that the correlation signal with VCV catalog is always smaller than the correla-
tion signal with SWIFT catalog. A further investigation is needed to understand if this behavior can be
addressed to the incompleteness of the VCV catalog in the region where |b| < 10◦, due to obscuration
by the Milky Way, with respect to the SWIFT catalog providing the most uniform all-sky hard X-ray
survey to date.

The correlation signal with AGN does not imply that AGN are the sources of UHECRs, but only
that their directions are in a non-negligible relationship with those ones of such astrophysical objects
that, however, may only act as tracers. Under the strong hypothesis that AGN are the real sources of
UHECRs, the smaller angles at which the correlation is found suggests a light composition of UHECR
above 55 EeV and small intervening magnetic fields.

6.5 Conclusions

In this chapter, we have investigated several astrophysical scenarios that could be responsible for the
observed clustering and correlation in Auger data. We have performed several different studies to
estimate the density of UHECR sources by varying the underlying hypotheses on the mass composition,
the intensity of magnetic fields and distribution of sources.

We have found that the lower bound on the source number density is of the order of 10−4 Mpc−3

at 95% confidence level, hence excluding some classical candidate astrophysical objects as BL Lac and
colliding galaxies, in favor of active galactic nuclei (AGN) and gamma-ray bursts (GRB).

Additionally, we have explored the possibility that nearby black holes are the sources of UHECRs
detected with the Auger Observatory. We have found that the mass of black holes plays an important
role in anisotropy analysis. In fact, the luminosity of black holes is proportional to their mass, as well
as the density of such objects in the nearby Universe, and both quantities have a direct impact on the
clustering of UHECRs. Our results suggest that, even in the more extreme cases, black holes with mass
smaller than ≈ 107.3M⊙ or larger than ≈ 108.75M⊙ are unlikely to be the only sources of UHE protons.
Conversely, black holes with mass larger than MBH, with 107.3 < MBH/M⊙ < 108.75 are candidate
sources of UHE protons observed at Earth above 60 and 80 EeV.

Finally, we have got different evidence of correlation between Auger data and two catalogues of
candidate sources, the Veron-Cetty-Veron 12th ed and the SWIFT-BAT 39-month. From our analyses,
AGN within 75 Mpc and 100 Mpc are favorite candidate sources, although the correlation signal with
AGN does not imply that they are the sources of UHECRs, but only that their directions are in a
non-negligible relationship with those ones of such astrophysical objects that may only act as tracers of
the actual UHECR sources.
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Every great and deep difficulty
bears in itself its own solution.
It forces us to change our
thinking in order to find it.

N. Bohr

We cling to our own point of
view, as though everything
depended on it. Yet our opinions
have no permanence; like
autumn and winter, they
gradually pass away.

Chuang Tzu
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Chapter 7

A phenomenological global picture of

Auger data above 60 EeV

In this conclusive chapter we aim at a global interpretation of Auger data above 60 EeV. In the previ-
ous chapters we have focussed on searching (and finding) anisotropy and correlation with astrophysical
objects in the arrival directions of UHECR detected by Auger. Here we include also the results of the
measurement of the elongation rate and of the energy spectrum (see Chap. 1). We use these measure-
ments to constrain astrophysical scenarios compatible at the same time with the observed spectrum,
elongation rate, clustering of the arrival directions and correlation with AGNs. We do so by considering
different models of source distribution, by including the production and propagation of UHECR in the
universe, and by considering different models of composition at the source.

7.1 Introduction

The recent results reported by the Pierre Auger Collaboration apparently show opposite conclusions
on the nature of UHECRs. In fact, the correlation of events with energy above 55 EeV with nearby
extragalactic matter within 3.1◦ [89] suggests the predominance of a light composition. On the other
hand, the measurements of the elongation rate end below 40 EeV even if already above few EeV the
data shows a clear trend towards a heavier composition when compared with simulations corresponding
to different hadronic models [92].

The main goal of the study presented here is to show that, under certain assumptions, observations
and measurements are not contradictory with each other and, moreover, with the observed flux of
UHECRs and their intrinsic clustering above 60 EeV.

In the previous chapter we have considered different models of source distribution in the nearby
universe (up to 250 Mpc), we have simulated the production of high energy protons and their propagation
in a ΛCDM universe, building mock maps of events in the Auger sky. We have investigated the clustering
features of such events by varying the main parameters in that study, namely the density of sources and
the energy threshold of protons, by means of the novel multiscale method [278]. We have shown that
the clustering analysis of Auger data allows to constrain the source density of UHECRs. Successively,
we have shown that such an approach allows to put constraints on both the source density and the
magnetic field (see Sec. 6.1 and Sec. 6.2).

In this chapter, we adopt the same procedure to constrain representative astrophysical scenarios
with different features (strength of the magnetic field, distribution of sources) by varying the fraction of
protons and iron nuclei in the simulated sky maps. Moreover, we use the value of Xmax above 60 EeV,
extrapolated from the most up-to-date Auger observations [91] for different hadronic models under the
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hypothesis of a two-species mixed composition model, to select the astrophysical scenario(s) compatible
with the data.

We will consider two toy models for the distribution of sources: one with active galactic nuclei
(AGN) from the SWIFT-BAT 58-months catalog [282] and another one with uniformly distributed
sources in the nearby universe, up to 200 Mpc. We will consider both the cases where sources are
assumed to be with uniform and equal luminosity, and where sources are assumed with their intrinsic
luminosity. In any case, the injection spectrum is assumed to follow a power law. As in studies presented
in previous chapters the produced particles (protons and iron nuclei) are successively propagated in a
ΛCDM universe, taking into account non-negligible energy-loss processes in the cosmic microwave and
infrared background photon fields. The effects of the irregular component of both galactic magnetic field
(GMF) and extragalactic magnetic field (EMF) are taken into account through a smearing procedure,
as well as the effect of experimental uncertainty on the angular resolution.

The clustering analysis is performed on Auger-like skies by varying all the variables in our parameter
space: the distribution of source, the EMF from 0.1 nG to 10 nG, a soft and a hard GMF, the composition
of UHECRs ((Z,A) = (1, 1) and (26, 56)). The energy threshold of particles reaching the Earth is fixed
to 60 EeV.

7.2 Simulation of sources and UHECRs

We consider two simple toy models for investigating the ability of the MAF method to discriminate
among different source densities and magnetic fields. In the first model, events are generated from
sources distributed according to the SWIFT-BAT 58-month catalog of AGN and, in the following, we
will refer to this model as “SWIFT”. In the second model, events are generated from sources isotropically
and homogeneously distributed in a sphere of a given radius, and, in the following, we will refer to this
model as “ISOHOM”. The particular choice of such models is justified by the fact that for a fixed source
density ns and EMF strength B, we are interested in investigating the clustering differences between
skies of events following the distribution of matter in the nearby universe (2MRS model) and skies of
events generated by randomly distributed sources (ISOHOM model). The source density of the selected
sample of AGN within 200 Mpc is ≈ 1.1× 10−5 Mpc−3. In the following, we will consider the following
cases for the sources:

1. ISOHOM model: equal intrinsic luminosity;

2. SWIFT model I: equal intrinsic luminosity;

3. SWIFT model II: observed intrinsic luminosity.

For the simulation of UHECRs we follow the procedure described in Sec. 6.2, for both protons and
heavier nuclei. Thus, the probability to get an event from a source at redshift z is proportional to
Lz−2ω(z, Ethr) (defined by Eq. 3.60), being L the intrinsic luminosity of the source.

7.3 Simulation of magnetic fields

The simulation of magnetic fields follows the same procedure described in Sec. 6.2. In the following, in
order to put in evidence the main differences in the clustering features, we will consider some models
involving different configuration of magnetic fields:

1. Hard GMF+EMF: where BGMF = 15 µG and BEMF = 1 nG;

2. Soft GMF+EMF I: where BGMF = 6 µG and BEMF = 0.1 nG;
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3. Soft GMF+EMF II: where BGMF = 6 µG and BEMF = 1 nG;

4. Soft GMF+EMF III: where BGMF = 6 µG and BEMF = 10 nG;

The coherence length is fixed to 100 pc for all GMFs and to 1 Mpc for all EMFs. Such an analysis,
at least in the GMF case, should require a full propagation code for estimating the traversing distance
of the UHECR inside our galaxy. However, we are not interested in achieving such a precision in this
particular case and we use the rough approximation that the average propagation distance in the galaxy
is ∼ 4 kpc in the HGMF+EMF scenario and ∼ 2 kpc in the SGMF+EMF scenario.

Note. The probability to get an event from a source has been described in Sec. 6.1. In the case
of iron, such a probability takes into account the photo-disintegration process and the possibility that a
lighter fragment may reach the Earth, with energy above the given threshold. However, when dealing
with the smearing of the arrival direction, because of the turbulent magnetic fields, we will assume that
the nuclei are always irons. Such an assumption is required because we do not perform a full propagation
from the source to the Earth. In a more realistic scenario the average deflection should be smaller than
that one considered in our study. However, we have estimated that our error has a negligible impact on
the final results. For instance, for Ethr = 60 EeV, the average mass of the fragment reaching the Earth
is estimated to be 〈A〉 ≈ 46 1, with a corresponding atomic number 〈Z〉 ≈ 23. The spreading angles
are proportional to Z: it follows that, on average, we overestimate the deflection when considering
an iron nucleus instead of the “true” fragment. Quantitatively, the overestimation factor is given by
26/〈Z〉 ≈ 1.13. The main consequence of such an overestimation is reflected by an underestimation of
the clustering signal, due to the larger spreading angle, for angular scale within ∼ 30◦. In fact, above
such a threshold, the MAF is not able to discriminate the angular scale of clustering with accuracy.
Deflections smaller than such an angular scale are obtained for fragments with Z ≥ 7 and Z ≥ 17,
in HGMF+EMF and SGMF+EMF scenarios, respectively, for E = 60 EeV: it follows that we really
underestimate the clustering signal in those cases where the iron nuclei have been produced by far
sources (leading to an higher probability to have a fragment at Earth with Z < 17 or Z < 7). However,
we have estimated that the probability, integrated over the distance, to have a fragment with A < 34
(A < 14) is smaller than ≈ 1% (≈ 7%), i.e. in practice our assumption will have a negligible impact on
the final results.

Deflections due to magnetic fields and experimental uncertainty are taken into account as described
in Sec. 6.2.1.

7.4 Description of the methods adopted for the clustering analysis

We analyze the mock maps of events generated for different values of a set of parameters defining a
particular astrophysical scenario. First, we briefly discuss the global and the local approaches used
for clustering and correlation analyses. Successively, we investigate the ability of our estimators to
discriminate among different astrophysical scenarios. The comparison with results obtained from Auger
data is also discussed. For the sake of completeness, we use the official data set of Auger events up to 31
Dec 2010 with standard quality cuts for anisotropy and correlation studies, and energy E ≥ 60 EeV. The
data set is shown in Fig. 7.1 superimposed to AGN within 200 Mpc from the SWIFT-BAT 58-months
catalog.

1Such an information has been deduced from Fig. 7 in Ref. [171].
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Figure 7.1: Auger events up to 31 Dec 2010 with energy E ≥ 60 EeV (circles) and AGN within 200 Mpc from the SWIFT-
BAT 58-months catalog (diamonds). The dashed line indicates the galactic plane (equatorial coordinates are
shown).

7.4.1 The global approach

As for the case of the analysis on the bounds of source density and EMF (see Sec. 6.1 and Sec. 6.2), we
adopt a global method to discriminate among models. In this study, it is intended to provide bounds
to the fraction of protons, for different astrophysical scenarios, by performing the comparison between
the data and the models through maximum values s⋆fp = max{sfp(Θ)}. For each astrophysical scenario
and fraction of protons fp, we build the distribution of s⋆fp for testing the hypothesis that the value
s⋆data, obtained from the data, is drawn from the distribution. The adopted procedure is equivalent to
that one adopted in the previous analyses, where the dependence on the angular scale Θ vanishes. It
is worth noticing that such a method can be applied to both intrinsic clustering (where s is the MAF)
and correlation (where s is the MCF) analyses.

7.4.2 The local approach

We have already proposed a local method to constrain the parameters of the study in Sec. 6.1. This
approach is explicitly based on hypothesis testing, for each angular scale Θ separately. Let H0(Θ, fp)
be the null hypothesis that sdata(Θ) is a random outcome of the distribution of s(Θ) corresponding to
the fraction of protons fp, for a given astrophysical scenario. The alternative hypothesis is simply the
negation of H0(Θ, fp) and the test size α, i.e. the significance, is fixed a priori. H0(Θ, fp) is rejected
if the fraction of skies providing a clustering more extreme than that of data is smaller than α. In
particular, when we test for the upper bound, H0(Θ, fp) is rejected if p(Θ, fp) ≤ α, with

p(Θ, fp) = P
[
sdata(Θ) ≤ sfp(Θ)

]
,

whereas if we test for the lower bound, H0(Θ, fp) is rejected if p(Θ, fp) ≤ α, with

p(Θ, fp) = P
[
sdata(Θ) ≥ sfp(Θ)

]
.

The lower bound to the fraction of protons, at the angular scale Θ, is defined to be the lowest value
of fp for which H0(Θ, fp) has not been rejected. Analogously, the upper bound to the fraction of
protons is defined to be the highest value of fp for which H0(Θ, fp) has not been rejected. It is worth
remarking that, within this approach, the comparison between the distribution of s(Θ) corresponding
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to a particular value of the fraction of protons and the data is independently performed twice: the first
time to test the hypothesis that the fraction is an upper bound and the second one to test the hypothesis
that the fraction is a lower bound.

Within such a procedure, the dependence on the angular scale Θ does not vanish (for further details
on this method we refer to Sec. 6.1). It is worth noticing that such a method can be applied to both
intrinsic clustering (where s is the MAF) and correlation (where s is the MCF) analyses.

7.5 Clustering analysis of simulated sky maps and of Auger data

In this section, we estimate the intrinsic clustering signal of UHECRs from both simulated sky maps and
data, by using the MAF. We consider the two scenarios involving different configurations of magnetic
fields (namely, HGMF+EMF and SGMF+EMF) and we separately consider some cases where the
strength of the EMF is varied. All events are simulated as previously discussed. We make use of both
global and local methods to obtain information about the fraction of protons compatible with clustering
signal estimated from the data. It worth remarking that the chance probability, properly penalized
because of the scan over the angular scale is P̃ ≈ 40%, thus compatible with the isotropic expectation
and in agreement with the results reported in Ref. [303].

In the following, intrinsic luminosity of sources is always considered, if not specified otherwise.

Results obtained from the global method

We estimate the maximum correlation signal, as a function of the fraction of protons, expected from
simulated sky maps (with the corresponding 1σ, 2σ and 3σ dispersion bands) and the signal from the
data. In Fig. 7.2 we show the results for ISOHOM (left panel) and SWIFT (right panel) models, in
the HGMF+EMF scenario (BEMF = 1 nG). The global method provides only a rough indication of the
fraction of protons compatible with the data: in fact, provided confidence bands do not allow a definitive
conclusion. In each case, the allowed fraction of protons is estimated to be around 50% within 95% CL.

In Fig. 7.3 we show the same plots of Fig. 7.2 but for the SGMF+EMF scenario. In this case, the
two models are better discriminated than the previous case, although confidence bands are still wide.
It is worth noticing that the SGMF+EMF scenario generally provides a smaller value for the allowed
fraction of protons.

Results obtained from the local method

We estimate the average clustering signal, as a function of both the fraction of protons and the angular
scale, expected from simulated sky maps, and the clustering signal from the data. We expect more
robust constraints on the allowed fraction of protons with respect to the global method because the
whole information about the distribution of Θ is taken into account.

In Fig. 7.4 we show the results for HGMF+EMF (left panel) and SGMF+EMF (right panel) scenar-
ios. In order to compare such results with the data, we make use of the χ2 statistics defined by

χ2
fp =

∑

Θ

[sdata(Θ)− 〈sMC(Θ; fp)〉]2
σMC(Θ; fp)

(7.1)

where sdata(Θ) is the clustering signal estimated from the data, 〈sMC(Θ; fp)〉 is the average clustering
signal obtained from a scenario with a fraction of protons fp and σMC(Θ; fp) is the corresponding
dispersion.

In Fig. 7.5 we show the values of the reduced χ2 as a function of the fraction of protons for the
HGMF+EMF (left panel) and the SGMF+EMF (right panel) scenarios. The fraction f⋆p where the χ2
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Figure 7.2: Multiscale autocorrelation of UHECRs with E ≥ 60 EeV. It is shown the maximum clsutering signal, as a
function of the fraction of protons, expected from simulated sky maps (solid lines) with the corresponding
dispersion bands (shaded areas) and the signal estimated from the data (dashed lines). Left panel: ISOHOM
model; Right panel: SWIFT model. HGMF+EMF scenario (BEMF = 1 nG) is considered.

Figure 7.3: Same as in Fig. 7.2 but for the SGMF+EMF scenario.

Figure 7.4: Multiscale autocorrelation of UHECRs with E ≥ 60 EeV. It is shown the average clustering signal, as a function
of the fraction of protons and of the angular scale, expected from simulated sky maps. HGMF+EMF (left)
and SGMF+EMF (right) models are considered.

gets a minimum is the most compatible with the observed correlation. We find fractions around 50%
and 10 − 20% for HGMF+EMF and SGMF+EMF scenarios, respectively, with no differences between
ISOHOM and SWIFT models. However, the latter result is not surprising: the density of sources
adopted for the simulations is of the order of 10−5 Mpc−3, whereas significant differences, between the
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Figure 7.5: Reduced χ2 statistics as a function of the fraction of protons, for the ISOHOM and SWIFT models. Left:

HGMF+EMF scenario (BEMF = 1 nG). Right: SGMF+EMF scenario (BEMF = 1 nG for SWIFT).

clustering of events from a uniform distribution of sources and from a distribution following the large
scale structure of matter in the nearby universe, arise at higher densities (see Sec. 6.1 and Sec. 6.2).

However, it is worth remarking that we have the best discrimination power only in the SGMF+EMF
model. Conversely, in the other cases, the values of reduced χ2 vary in a small range (namely, from
≈ 2 to ≈ 7), making more difficult a statistically significant discrimination. Such results are compatible
with that ones obtained within the global method, but provide a more precise estimation of the allowed
fraction of protons corresponding to each scenario. If a comparison between all reduced χ2 curves is
considered, the SGMF+EMF scenario is the most compatible model with the observed clustering.

The general conclusion of this particular analysis is that in the case of weaker magnetic fields (i.e.
small deflections) the data is compatible with a small fraction of protons, whereas for stronger magnetic
fields (i.e. large deflections) a higher fraction of protons, around 50%, is required to reproduce the
clustering signal. In order to understand which astrophysical scenario is more likely, in the following
we will perform independent analyses based on other physical observables as the elongation rate, the
spectrum and the correlation with AGN.

7.6 The elongation rate predictions from different hadronic models
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Figure 7.6: Average Xmax estimated from the data (black points) and from different hadronic models (lines). The black
solid line intersecting the data indicates a fit [91].

The most up-to-date measurements of the elongation rate end around 40 EeV [91], and it is not
possible to draw definitive conclusions on the composition of Auger events above such an energy scale.
In Fig. 7.6 we show the elongation rate estimated from the data up to 31 December 2010, together
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Figure 7.7: Flux scaled by E3 (power law with s = 2.4 and no cutoff) for 100% protons (left panel), 50% protons
and 50% iron (central panel), 100% iron (right panel). The red and blue lines refer to the all-particle
spectrum at Earth coming from the two primaries; the gray line in the case of mixed composition refer
to the all-particle spectrum from the sum of the two all-particle spectra. Black solid points indicates
the flux reported by the Pierre Auger Collaboration [28].

with values estimated from different hadronic models. It is evident a clear trend towards a heavier
composition, although the value of 〈Xmax〉 can not definitively shed light on the composition of UHECRs.
The predicted value of 〈Xmax〉 for E = 60 EeV is obtained from the fit in the figure, and it corresponds
to ≈ 778.7 g cm−2. In order to know the predicted values from the hadronic model, we assume a mixed
composition with only two species (namely, protons and irons):

〈Xmax〉fit = fp 〈Xp
max〉hm + (1− fp)

〈
XFe

max

〉
hm

(7.2)

where “hm” indicates the hadronic model. The predicted fractions fp are reported in Tab. 7.1: values
obtained from EPOS are in agreement with allowed fractions estimated from intrinsic clustering analysis
in the SGMF+EMF scenario, whereas the other hadronic models are in agreement with allowed fractions
in the HGMF+EMF scenario. Such a results provides an interesting relationship between the elongation
rate and the deflections of UHECRs in the GMF, that needs further investigation.

Model EPOSv1.99 SIBYLLv2.1 QGSJETII QGSJET01
%protons 24 39 50 60

Table 7.1: Predicted fractions of protons from different hadronic models for E = 60 EeV.

It is worth remarking that, at this first step, we are neglecting information carried by the other
popular shower profile observable, namely the dispersion on Xmax. In fact, it has been recently shown
that such an observable reflects the propagation of nuclei and then induces fluctuations on Xmax that
are not compatible with a pure composition at Earth [311]. In the future developments of the present
work, we will include the dispersion among the other observables adopted in our framework.

7.7 The energy spectrum in different scenarios

In this section we discuss some particular astrophysical scenarios from the point of view of the UHECR
spectrum. The spectra we show are obtained with a dedicated simulation code, named SimProp, devel-
oped in collaboration between the groups of L’Aquila and Roma II [211]. The code has been designed
to simulate the mono-dimensional propagation of nuclei and is mainly based on the analytical scheme
by Aloisio et al. [187, 312].

We simulate the generation of pure compositions, in particular protons and iron nuclei, and also a
mixed composition of these two species (see Fig. 7.7). Here we decide to choose the case of a single
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Figure 7.8: Flux scaled by E3 for different composition, no energy cutoff, power law s = 2.7 (left panel) and
s = 2.4 (right panel), superimposed to the flux measured with the Pierre Auger Observatory (black
solid points).

spectral index, namely s = 2.4. This choice does not come from any optimization procedure, but refers
to a simulated spectrum [183] calculated for comparison with Auger data in Ref. [313]. For simplicity,
we assume the same spectral index for protons. Moreover, in this study we do not assume an energy
cutoff at the source. However, it should be noticed that even if the energy cutoff at the source has
no significative impact on the all-particle spectrum, it can have implications on other observables, as
〈Xmax〉 and σ(Xmax), as pointed out in [311]. Finally, the calculated spectra are normalized to the
Auger spectrum above 1018.8 eV.

In Fig. 7.8 we compare the all-particle spectra for different values of the proton fraction and different
values of the spectral index. Even if this work is not the result of a fit, the spectral index s = 2.7 can
be easily excluded by looking at the left panel of Fig. 7.8, for different source compositions. Moreover,
regarding the single proton composition at the source, this hypothesis (with spectral index s = 2.4) can
be excluded by the comparison with the Auger spectrum in the left panel of Fig. 7.7.

In conclusion, except these extreme hypotheses, the energy spectrum alone is not able to discriminate
between different source composition, as demonstrated in the right panel of Fig. 7.8, although it is still
able to discriminate between different injection spectra. In the future developments of the present work,
we will perform a more precise fine tuning of the main parameters involved in this particular study, by
using a more advanced optimization procedure.

As it has been pointed out in Ref. [314], the understanding of the spectrum is still debated. It is
generally assumed that below the “ankle” the main contribution to the spectrum is provided by CRs of
galactic origin, whereas above the “ankle” the contribution is considered to be extragalactic. However,
above the “ankle”, the galactic component could still supply a significant number of CRs to the overall
flux. The slope in this region of the spectrum, presumed end of the galactic component, is the key
parameter that should shed light on such a contribution to the flux. Our results suggest that s = 2.4
represents an upper limit to the allowed values of the spectral index: in fact, smaller values could be
also valid if a significant contribution from the galactic component is present.

7.8 The correlation with AGN

In this section, we estimate the correlation signal between UHECRs and AGN within 75 Mpc from
the SWIFT-BAT 58-month catalog, by using the MCF. The choice of such a catalog is justified by its
completeness, even in the region around the galactic plane. We consider the two scenarios involving
different configurations of magnetic fields (namely, HGMF+EMF and SGMF+EMF, with BEMF = 1 nG)
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and we separately consider the cases where the intrinsic luminosity of the sources is taken into account
or not. All events are simulated as previously discussed. Again, we make use of both global and local
methods, already discussed in the case of the intrinsic clustering analysis, to obtain information about
the fraction of protons compatible with correlation signal estimated from the data, shown in Fig. 7.9.

Figure 7.9: Multiscale cross-correlation between Pierre Auger events with E ≥ 60 EeV and AGN within 75 Mpc from
the SWIFT-BAT 58-month catalog. The chance probability, properly penalized because of the scan over the
angular scale is P̃ ≈ 4.2% (Θ⋆ ∼ 3◦).

The chance probability, properly penalized because of the scan over the angular scale is P̃ ≈ 4.2%
for Θ⋆ ∼ 3◦, although a similar probability (≈ 4.5%) is obtained for ∼ 17◦. Such a result suggests that
correlation is expected to be found in ≈ 95% of cases with SWIFT-like scenarios, hence, in the following,
we will consider only events generated from the SWIFT model for the distribution of sources.

Results obtained from the global method

We estimate the maximum correlation signal, as a function of the fraction of protons, expected from
simulated sky maps (with the corresponding 1σ, 2σ and 3σ dispersion bands) and the signal from the
data. In Fig. 7.10 we show the results for the HGMF+EMF scenario when the intrinsic luminosity of
sources is taken into account (left panel) or not (right panel). The global method provides only a rough
indication of the fraction of protons compatible with the data: in fact, provided confidence bands do
not allow a definitive conclusion. Moreover, the assumption of considering the number of events coming
from a source to be proportional to the intrinsic luminosity of the source itself, is reflected in a increase
of 15% in the allowed fraction of protons (where the data coincides with the average maximum clustering
of the model). In each case, the fraction is estimated to be larger than 50%.

In Fig. 7.11 we show the same plots of Fig. 7.10 but for the comparison between HGMF+EMF
(left panel) and SGMF+EMF (right panel) scenarios. In this case, the two models are better dis-
criminated than the previous case, although confidence bands are still wide. It is worth noticing that
the SGMF+EMF scenario provides a smaller value for the allowed fraction of protons, around 20%.
Such a result is partially expected because, for deflections smaller than those ones corresponding to
the HGMF+EMF scenario, the MCF is more sensitive to correlating events, hence requiring a smaller
number of protons coming from the sources.

Results obtained from the local method

We estimate the average correlation signal, as a function of both the fraction of protons and the angular
scale, expected from simulated sky maps, and the correlation signal from the data. We expect more
stringent constraints on the allowed fraction of protons with respect to the global method because the
information about the distribution of Θ is taken into account.
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Figure 7.10: Multiscale cross-correlation between UHECRs and AGN within 75 Mpc from the SWIFT-BAT 58-month
catalog. It is shown the maximum correlation signal, as a function of the fraction of protons, expected
from simulated sky maps (solid lines) with the corresponding dispersion bands (shaded areas) and the signal
estimated from the data (dashed lines). Left panel: real intrinsic luminosity L of sources are used; Right

panel: sources are assumed to be with equal intrinsic luminosity (L = 1). HGMF+EMF model is considered.

Figure 7.11: Same as in Fig. 7.10 but for the comparison between HGMF+EMF (left panel) and SGMF+EMF (right
panel) models. Intrinsic luminosity of sources is considered.

Figure 7.12: Multiscale cross-correlation between UHECRs and AGN within 75 Mpc from the SWIFT-BAT 58-month
catalog. It is shown the average correlation signal, as a function of the fraction of protons and of the angular
scale, expected from simulated sky maps. HGMF+EMF (left) and SGMF+EMF (right) model are considered.

In Fig. 7.12 we show the results for HGMF+EMF (left panel) and SGMF+EMF (right panel) sce-
narios, when the intrinsic luminosity of sources is taken into account. As in the case of the intrinsic
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Figure 7.13: Reduced χ2 statistics as a function of the fraction of protons, for the three scenarios considered in this section.

clustering analysis, in order to compare such results with the data, we make use of the χ2 statistics
defined by Eq. 7.1, where sdata(Θ) is the correlation signal estimated from the data, 〈sMC(Θ)〉 is the
average correlation signal obtained from a scenario with a fraction of protons fp and σMC(Θ) is the
corresponding dispersion.

In Fig. 7.13 we show the values of the reduced χ2 as a function of the fraction of protons. The
fraction f⋆p where the χ2 gets a minimum is the most compatible with the observed correlation. When
intrinsic luminosity is taken into account, we find fractions around 80% and 25% for HGMF+EMF
and SGMF+EMF scenarios, respectively. If sources are considered with equal intrinsic luminosity, the
fraction of protons is around 50% in the HGMF+EMF scenario. However, it is worth remarking that
we have the best discrimination power only in the L−weighted - SGMF+EMF model. Conversely, in
the other cases, the values of reduced χ2 vary in a small range (namely, from ≈ 1 to ≈ 4), making more
difficult a statistically significant discrimination. Such results are compatible with that ones obtained
within the global method, but provide a more precise estimation of the allowed fraction of protons
corresponding to each scenario. As in the case of the intrinsic clustering analysis, if a comparison
between all reduced χ2 curves is considered, the SGMF+EMF scenario is the most compatible model
with the observed correlation.

The cases where all sources are considered with equally intrinsic luminosity reflect the implicit
assumption that AGN closer to Earth have a larger impact on the flux of UHECRs than more distant
AGN. In those scenarios, the allowed fraction of protons is expected to be smaller than the fraction
obtained from scenarios where the intrinsic luminosity is taken into account. In fact, in no−L−weighted
models, closer AGN have the highest weight (because of the z−2 factor) and the number of emitting
sources is small. Conversely, in L−weighted models, more distant AGN play a role and the number
of emitting sources is larger than the previous case. From very simple and elegant arguments it can
be shown that, for a fixed number of UHECRs in the sky, the clustering (as well as the correlation)
signal increases for decreasing number of sources and vice versa [226]. By reversing such arguments, for
a fixed clustering (or correlation) signal a small fraction of clustered events (i.e. protons) is required if
the number of emitting sources is small, whereas a larger fraction is required if the number of sources
gets larger.

The general conclusion of this particular analysis is that in the case of weaker magnetic fields (i.e.
small deflections) the data is compatible with a small fraction of protons, whereas for stronger magnetic
fields (i.e. large deflections) a higher fraction of protons, generally larger than 50% (depending on the
assumptions about intrinsic luminosity of sources), is required to reproduce the correlation signal. Both
conclusions are still compatible with previous analyses, in particular with results obtained from intrinsic
clustering and Xmax predictions.
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7.9 Conclusion

In this chapter, we have performed an extended study which takes into account multiple Auger obser-
vations, as the elongation rate, the energy spectrum, the intrinsic clustering and the correlation with
AGN. By varying the underlying assumptions, as for instance those ones on the mass composition and
the intensity of magnetic fields, we have outlined an astrophysical scenario able to explain Auger data
from a phenomenological point of view.

We have considered different models of source distribution in the nearby universe (up to 200 Mpc) and
we have simulated the production of UHECRs and their propagation in a ΛCDM cosmology, including
different configurations of magnetic fields (only the turbulent component, galactic and extragalactic)
and composition of events. We have adopted a mixed composition model, by considering skies populated
with a fraction fp of protons and a fraction 1− fp of iron nuclei. By varying the parameter fp, we have
estimated, through the multiscale autocorrelation function, the intrinsic clustering signal in the arrival
directions of events generated according to models and we have exploited the Pierre Auger data to
constrain the simulations. The value of Xmax above 60 EeV, extrapolated from the data, has been used
to select the compatible astrophysical scenario(s) for different hadronic models, whereas the observed flux
of UHECRs has been used for probing two plausible injection spectral indices. Finally, the correlation
with active galactic nuclei (AGN) within 75 Mpc (from the SWIFT-BAT 58-months catalog) has been
considered to further restrict the number of models compatible with the data.

Results can be summarized as follows. We have found two plausible scenarios, corresponding to
two different models for galactic and extragalactic magnetic field: more intense GMFs requires a higher
fraction of protons (around 50%) in the data to obtain the observed clustering and correlation signals,
whereas less intense GMFs requires a smaller fraction of protons (around 20%) to achieve the same result.
In the first case, results are in agreement with predictions from SIBYLL and QGSJET hadronic models,
whereas in the second case, there is agreement only with predictions from EPOS. In any case, the more
likely spectral injection index is 2.4. However, if a global comparison is performed, the SGMF+EMF
scenario, together with the corresponding compatible models, is the most suitable candidate to reproduce
the observed data.

Moreover, we have found an interesting relationship between the elongation rate and the deflections
of UHECRs in the GMF, that needs further investigation.
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Conclusions and outlook

The subject of this thesis has been the investigation of the arrival directions of ultra-high energy cosmic
rays (UHECRs) detected by the Pierre Auger Observatory. The study of UHECR at Earth cannot
prescind from the study of their propagation in the Universe. We have developed an ad hoc Monte
Carlo code (HERMES) for the realistic simulation of UHECR propagation (Chaps. 2 and 3). For the
search for clustering in the observed arrival directions and for a correlation with astrophysical objects
considered as possible UHECR accelerators, we have introduced a novel method, a multi-scale one
(Chap. 4). Besides for the actual search of anisotropies, we have used such method to infer the nature
of the sources and their density (Chaps. 5 and 6). Finally, we have considered the obtained results on
anisotropy in the more general frame of Auger results (including the observed energy spectrum and the
inferred mass composition) to constrain astrophysical scenarios compatible at the same time with these
three main observables (Chap. 7). Into more details:

• In chapter 2 and 3 we have described the HERMES propagation code, presenting the modeling we
have adopted for i) the cosmological framework, ii) the cosmic background radiation (microwave,
infrared/optical and radio), iii) the regular component of the Galactic magnetic field and the
irregular component of both the Galactic and the extragalactic magnetic fields, iv) the cross
sections describing the interactions between UHE nuclei and photons of extragalactic background
radiation, v) the production of secondary particles because of such interactions.

• In the same chapters we have shown several simulations of nuclei propagating in a magnetized
Universe and in our Galaxy, by varying the relevant parameters, putting in evidence impact of
magnetic fields and energy-loss processes. We have included all the relevant energy losses, as the
adiabatic loss (due to the expansion of the Universe), the pair and photo-pion production, and,
in the particular case of heavy nuclei, the photo-disintegration processes. We have estimated the
surviving probability of UHECRs as a function of their energy and their propagation distance,
and we have investigated the impact of energy-loss processes on the propagation of nuclei and, in
particular, on the GZK horizon of UHE protons. The agreement between our results and those
ones obtained with other simulator available to the community is remarkable.

• In chapter 4 we have introduced a new multiscale method for the investigation of the anisotropy
in the arrival direction distribution of UHECR events. It has been designed to perform both
catalog-independent and catalog-dependent analyses, and it is based on information theory and
extreme value statistics. We have shown that the multiscale method is a competing tool for the
study of both small and large scale anisotropies and correlations, providing a great discrimination
power even in presence of a strong background contamination and for quite different astrophysical
scenarios. As a possible application of our method, we have shown how to probe the Hubble
parameter with clustering analysis, by assuming that AGN in the nearby Universe are the sources
of UHECRs.

• In chapter 5 we have extensively used multiscale methods to search for an anisotropy signal in
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CHAPTER 7.

Auger UHECR data, as well as for a correlation with candidate objects in astronomical catalogues.
We have investigated the influence of angular and energy uncertainties on both the anisotropy and
the correlation signals of events detected with the Pierre Auger Observatory. We have shown that
such uncertainties have an impact on the estimated signal. In particular, the energy resolution
significantly affects the clustering, whereas the angular resolution negligibly affects such studies.

• In chapter 6 we have investigated several astrophysical scenarios that could be responsible for the
observed clustering and correlation in Auger data. We have performed several different studies
to estimate the density of UHECR sources by varying the underlying hypotheses on the mass
composition, the intensity of magnetic fields and distribution of sources. We have found that
the lower bound on the source number density is of the order of 10−4 Mpc−3 at 95% confidence
level, hence excluding some classical candidate astrophysical objects as BL Lac and colliding
galaxies, in favor of active galactic nuclei (AGN) and gamma-ray bursts (GRB). Additionally, we
have explored the possibility that nearby black holes are the sources of UHECRs detected with
the Auger Observatory. We have found that the mass of black holes plays an important role in
anisotropy analysis. In fact, the luminosity of black holes is proportional to their mass, as well as
the density of such objects in the nearby Universe, and both quantities have a direct impact on the
clustering of UHECRs. Our results suggest that, even in the more extreme cases, black holes with
mass smaller than ≈ 107.3M⊙ or larger than ≈ 108.75M⊙ are unlikely to be the only sources of
UHE protons. Conversely, black holes with mass larger than MBH, with 107.3 < MBH/M⊙ < 108.75

are candidate sources of UHE protons observed at Earth above 60 and 80 EeV.

• Finally in chapter 7 we have performed a more extended study, taking into account the two other
most relevant observations of the Pierre Auger Observatory, namely the average maximum of
the shower development and the energy spectrum. By varying the underlying assumptions, as
for instance those ones on the mass composition and the intensity of magnetic fields, we have
simulated the production of UHECRs and their propagation in a ΛCDM cosmology. Hence, we
have outlined the astrophysical scenarios able to explain Auger data from a phenomenological
point of view. We have found two plausible scenarios, corresponding to two different models for
galactic and extragalactic magnetic field: more intense GMFs requires a higher fraction of protons
(around 50%) in the data to obtain the observed clustering and correlation signals, whereas less
intense GMFs requires a smaller fraction of protons (around 20%) to achieve the same result.
In the first case, results are in agreement with predictions from SIBYLL and QGSJET hadronic
models, whereas in the second case, there is agreement only with predictions from EPOS. In any
case, the more likely spectral injection index is 2.4. However, if a global comparison is performed,
the scenario with a weak turbulent GMF, together with the corresponding compatible models, is
the most suitable candidate to reproduce the observed data.

As widely discussed in the present thesis, a final answer about the origin and the composition of
UEHCRs is still missing. The analyses presented in this thesis have had the aim of shedding more light
on the problem of UHECR origin. This has been possible especially thanks to the access to the data of
the largest ever built cosmic ray experiment, the Pierre Auger Observatory. Our studies have provided
results about the propagation of UHECRs, their clustering and their possible sources in the energy region
of highest attraction in astroparticle physics, namely the trans- and super-GZK region (approximatively
above 1019.7 eV). They have also shown that the modeling of both sources and propagation, coupled to
clustering and correlation analysis, may be able to open new insights to the solution of the still unsolved
UHECR puzzle.
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Appendix A: Relativistic kinematics

In this appendix we will briefly derive the main parameters involved in the kinematics of the propagation
of UHECRs, calculating the inelasticity factors in collisions and decays in the framework of special
relativity. In the following we will use standard units (if not specified otherwise), and a 4-momentum is
indicated by Pµ ≡ (E/c, ~p), even if we neglect the subscript µ for simplicity. We will indicate quantities
in the center of mass frame (CMF) with superscript ⋆, in the nucleus rest frame (NRF) with superscript
′ and in the laboratory frame (LF) with no superscript. It is worth remarking that the LF is denoted
by the metric which is co-moving with the expanding Universe.

Energy threshold for particle production in p+ γ interactions

The interaction between a UHE proton and a background photon may be responsible for the production
of new particles, if the energy of the proton is large enough. Such an interaction is an efficient mechanism
for energy losses leading, for instance, to the GZK effect, where the production of pions, through a ∆
resonance, is the main channel (the branching ratio is ≈ 99.4%): p + γ −→ ∆ −→ N + π. Let Ep

and ǫγ be the energies in the LF of the proton and the background photon, respectively, and let E0 be
the energy of the proton at the threshold for the ∆ resonance. In the LF, we calculate the relativistic
invariant

s = (Pp + Pγ)
2 head-on

= M2
p c

2 + 4
E0

c

ǫγ
c
, (A.3)

which is also equal to P 2
∆ =M2

∆c
2, because of the conservation of 4-momentum and we are considering

the interaction at the energy threshold. It follows that photo-pion production occurs for Ep ≥ E0, i.e.
if

Ep ≥
M2

∆c
4 −M2

p c
4

4ǫγ
. (A.4)

The average energy of a CMB photon is ≈ 6 × 10−4 eV: even by considering the most energetic
photons, whose energy ≈ 3 × 10−3 eV lies in the tail of the Planck distribution, and the lightest
∆−baryon with mass ≈ 1.232 GeV, the photo-pion production is allowed for Ep ≥ 5.3× 1019 eV.

A similar calculation provides the energy threshold for the interaction p+γ −→ p+e++e−, involving
the production of a positron/electron pair.

Case p+ γ −→ ∆ −→ N + π

We will provide some results in the case of protons interacting with background photons, even if the
generalization to the case of heavier nuclei is straightforward. In this case N denotes a nucleon, whereas
π indicates any pion of the corresponding isospin triplet. Of course, we are assuming that interaction
may occur, i.e. that the energy of the primary proton is over threshold.
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In the CMF the system behaves like a particle of mass M⋆ = Mp + mγ = Mp, energy ECM, 4-
momentum P ⋆ = P ⋆

p + P ⋆
γ ≡ (Ep/c+ ǫγ/c, 0) and

s
CMF
=

(
Ep

c
+
ǫγ
c

)2
NRF
= M2

p c
2 + 2Mpǫ

′
γ , (A.5)

with ǫ′γ = Γpǫγ(1− β cos θ). Here, Γp is the Lorentz factor of the proton in the LF and θ is the collision
angle. On the other hand, in the CMF we have s = |P ⋆|2 =M2

p c
2 and

ΓCM =
ECM

Mpc2
=
Ep + ǫγ
c
√
s

≃ Ep

c
(
M2

p c
2 + 2Mpǫ′γ

) 1
2

. (A.6)

The energy of each product, namely the nucleon and the pion, can be determined in the CMF because
of 4-momentum conservation P ⋆ = P ⋆

p + P ⋆
γ = P ⋆

N + P ⋆
π , from which we obtain

P ⋆
N = P ⋆ − P ⋆

π

P ⋆
π = P ⋆ − P ⋆

N .

Now, we square both sides of the above equations, obtaining

M2
N,πc

2 = s+M2
π,Nc

2 − 2
√
s
E⋆

π,N

c
(1− βN,π cos θN,π) , (A.7)

in a compact notation. By averaging over θN,π in the interval [0, π], we obtain

〈E⋆
N,π〉 = c

(
s+M2

N,πc
2 −M2

π,Nc
2

2
√
s

)
, (A.8)

where

s =M2
p c

2 + 2MpΓpǫγ(1− β cos θ) and Γp =
Ep

Mpc2
, (A.9)

that is in perfect agreement with the result reported by Stecker [181]. If we use the approximation that
all collisions are head-on (that is not true, on average), i.e. θ = π, in the LF we obtain

〈EN,π〉 = ΓCM〈E⋆
N,π〉

=
1

2
Ep

(
1 +

M2
N,πc

4 −M2
π,Nc

4

M2
p c

4 + 4Epǫγ

)
, (A.10)

that is the average energy carried by the resulting nucleon (〈EN 〉) and pion (〈Eπ〉). The inelasticity
factor κ(Ep, θ) is defined as the average fractional energy ∆Ep/Ep lost during the interaction:

κ(Ep, θ) =
1

2

(
1−

M2
N,πc

4 −M2
π,Nc

4

M2
p c

4 + 2Epǫγ(1− cos θ)

)
. (A.11)
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Case N + γ −→ ∆+ π −→ Nπ̃π

This interaction is directly involved in the multi-pion production process, providing more than a pion
at the end of the collision. As in the previous case, from similar arguments we obtain the energy carried
out by the ∆−baryon and the pion in the LF:

〈E∆,π〉 =
1

2
EN

(
1 +

M2
∆,πc

4 −M2
π,∆c

4

M2
Nc

4 + 4EN ǫγ

)
. (A.12)

After such an interaction, the ∆−baryon decays to a nucleon Ñ and a pion π̃, where the ∼ symbol allows
us to distinguish the pion produced in such a decay from the pion produced in the original interaction.
In the CMF we have s =M2

∆c
2, ΓCM = E∆/c

√
s and

P ⋆
Ñ,π̃

= P ⋆
∆ − P ⋆

π̃,Ñ
, (A.13)

from which, after some algebra, we obtain the average energy of the decay products in the LF:

〈EÑ,π̃〉 =
1

2
E∆

(
1 +

M2
Ñ,π̃

−M2
π̃,Ñ

M2
∆

)
. (A.14)

Case π0 −→ γ + γ

This channel is relevant for the production of GZK photons. By following a procedure similar to that
previously described, in the CMF we have P ⋆ ≡

(
E⋆

π0/c, 0
)
,
√
s = E⋆

π0/c =M2
π0c

2 and from conservation
of 4-momentum:

P ⋆
γ1,γ2 = P ⋆ − P ⋆

γ2,γ1 , (A.15)

from which 〈E⋆
γ1,γ2〉 = c

2

√
s. In the LF we simply obtain 〈Eγ〉 = Eπ/2 for both photons produced by the

decay of the neutral pion. Of course, it is worth remarking that such a result is only valid on average.

Case π −→ µ+ νµ

This channel is relevant for the production of GZK neutrinos. By following the same procedure described
in the case π0 −→ γγ, and by assuming a negligible mass for the neutrino (Mν ≈ 0), in the LF we simply
obtain

〈Eµ,νµ〉 =
1

2
Eπ

(
1±

M2
µ

M2
π

)
. (A.16)

Successively, the muon undergoes a 3-body decay, with the additional production of 2 neutrinos:
µ− −→ e−νeνµ or µ+ −→ e+νeνµ, depending on muon charge. This is a pure leptonic decay involving
no mixing, and if the electron (positron) energy is assumed to be much larger than its rest mass, the
corresponding approximated energy spectrum can be estimated by

S(ε)dε =
G2

Fm
2
µ

192π3
(3− 2ε)ε2dε, (A.17)

where GF is the Fermi coupling constant and ε = 2Ee/mµ, in natural units. However, the correct energy
spectrum, known as Michel spectrum, is given by

S(ε)dε =
G2

Fm
2
µ

16π3

[
1− ε− 2

9
ρ(3− 4ε)

]
ε2dε, (A.18)

taking into account the most general interaction among the four fermions and where ρ is the Michel
parameter [315, 316].
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Appendix B: Probability, Statistics and

Information theory

The present appendix should be useful for a better understanding of the mathematical and physical
meaning of information quantities involved in the multiscale approaches introduced in this work, as well
as the basic definitions generally adopted in probability and statistics.

B.1 Probability and Statistics hints

Definition 1 (Expectation value) The expectation value of a stochastic variable X is defined as

E(X) =

∫

Ω
XdPr

If X has a PDF f(x), then

E(X) =

∫

O

xf(x)dx

Definition 2 (Moments) The n−th moment of a stochastic variable X about x̂ ∈ O, is defined as

µp(X) = E(Xn) =

∫

Ω
D(X(w), x̂)ndPr

where D is a metric. If X has a PDF f(x), then

µp(X) = E(Xp) =

∫

O

(x− x̂)nf(x)dx

Definition 3 (Test statistics) Given a random sample {Xn} = X1, X2, ..., Xn of a d−dimensional
stochastic variable X

(d), a test statistics E is the mapping

E : X(d) → D ⊆ R : {{Xn} → E ({Dm})}

where R is the set of real numbers and {Dm} = D1({Xn}), D2({Xn}), ..., Dm({Xn}) are real parameters
defined in the spaces D1,D2, ...,Dm, respectively. Parameters define the m−dimensional parameter space

S = D1 ⊗ D2 ⊗ ...Dm

In general D is an interval of real numbers, open or closed, bounded or unbounded.
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Definition 4 (Bias) Let Ê be an estimator of the test statistics E: the bias on E is defined as

b
[
Ê
]
= E

[
Ê
]
− E

An estimator is unbiased if b[Ê ] = 0.

Sellke et al. [221] presented a rigorous estimation of the lower limit on significance (type I error)
from a p-value, which does not require assumptions on the distribution of the p-value and an explicit
alternative hypothesis.

Theorem 1 (Mapping p-value to significance) If, for the p-value, the relation P < e−1 holds, then
the lower limit to the significance of the test T is given by

α(P ) ≥
(
1− 1

eP logP

)−1

Proof 1 We refer to [221] for the proof.

Often, several tests are performed on the same data. The following two theorems establish how to
combine results to obtain the corresponding significance.

Theorem 2 (Fisher’s method to combine p-values) Let Pi(E) be the p-value corresponding to the
statistical test Ti (i = 1, 2, ..., s) of a null hypothesis H0 through the test statistics E. The combined test
statistics

F2 = −2 ln

(
s∏

i=1

Pi(E)
)

= −2
s∑

i=1

lnPi(E) (B.19)

has a χ2 distribution with 2s degrees of freedom if H0 is true for each test.

Proof 2 The sketch of the proof is as follows [317]. If H0 is true for the i−th test, then Pi(E) ∈ U(0, 1),
− lnPi(E) follows an exponential distribution and −2 lnPi(E) follows a χ2 distribution with 2 degrees of
freedom.

The sum of s independent χ2 distributions, each with 2 degrees of freedom, yields a χ2 distribution
with 2s degrees of freedom.

Theorem 3 (Stouffer’s Z-scores method) Let Pi(E) be the p-value corresponding to the statisti-
cal test Ti (i = 1, 2, ..., s) of a null hypothesis H0 through the test statistics E, and define Zi =
F−1
N (1− Pi(E)), where FN is the standard normal CDF. The combined test statistics

Z =
1√
s

s∑

i=1

Zi

is called Z-score and it follows a standard normal distribution if H0 is true for each test. If wi is the
weight corresponding to Zi, the weighted Z-score is defined as

Z̃ =
1

S

s∑

i=1

wiZi, S =

√√√√
s∑

i=1

w2
i (B.20)

and, again, it follows a standard normal distribution if H0 is true for each test.
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Definition 5 (Maximum Likelihood Estimation) Let X(d) be a d−dimensional stochastic variable
with continuous density f(x; t), where x represents a d−dimensional outcome of X(d) and t is the set of
m real parameters (to be estimated) of a statistical parameterized model. If n indipendent outcomes are
available, the likelihood function, defined as

L(t) =
n∏

i=1

f(xi|t) (B.21)

is maximized by the estimates t̂ of the parameters t. In many practical applications, the negative log-
likelihood function

L(t) = − lnL(t) = −
n∑

i=1

ln f(xi|t)

is used instead of L(t), where minimization is used instead of maximization.

The likelihood method (or MLE) allows to estimate, through the likelihood function, the unknown pa-
rameters of a statistical model if the outcomes are known. It follows that, in general, t = t(x1,x2, ...,xn).

Example. If n times ti are measured, they should be distributed with density f(t; τ) =
1/τ exp(−t/τ) whose likelihood function is

L(τ) = −
n∑

i=1

(
ln

1

τ
− ti
τ

)

By minimizing L(τ), the estimate

t̂ =
1

n

n∑

i=1

ti

which is unbiased because of E[t̂] = τ . If density is f(t; τ) = λ exp(−λt), then the estimate is λ̂ = 1/τ̂ ,
but E[λ̂] = n/(n− 1)λ, i.e. the estimate is biased [318].

It can be shown that, under very general assumptions, t̂ are asymptotical normally distributed with
minimal variance Indeed, the maximum likelihood solution is invariant under the change of parameters
but the bias for finite n may be different for different transformations of the parameter [318].

Theorem 4 (Fisher’s information) Given a parameterized statistical model, if t̂ = t̂(x1,x2, ...,xn)
are unbiased estimations of parameters, the Fisher’s information, defined as

I(ti, tj) = E

[
∂ lnL(t)
∂ti

∂ lnL(t)
∂tj

]
= −E

[
∂2 lnL(t)
∂ti∂tj

]

gives a lower limit to the variance of t̂ through the Rao-Cramer-Frechet inequality

V
[
t̂
]
≥ I−1

Axiom 1 (Likelihood principle) In the statistical inference about a set of parameters t of a given
parameterized statistical model, after the observation of x, all relevant information about the sample is
contained in the likelihood function for the observed x. Two different likelihood functions contain the
same information about x if they are proportional to each other.
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The MLE satisfies the likelihood principle.

Definition 6 (Likelihood ratio) Given a statistical test T of a null hypothesis H0 (with g0 degrees of
freedom) against an alternative hypothesis H1 (with g1 degrees of freedom), the likelihood ratio

Λ(x) = −2 (lnL(t|H0)− lnL(t|H1)) = −2 ln

[L(t|H0)

L(t|H1)

]

is a test statistics following a χ2 distribution with g0 − g1 d.of.

In general, the likelihood ratio test statistics must be treated as a common test statistics and the
estimation of p-values is required for hypothesis testing.

Theorem 5 (Neyman-Pearson lemma) Given a statistical test T of a null hypothesis H0 against
an alternative hypothesis H1, the likelihood ratio test

Λ(x) ≤ λ, Pr (Λ(x) ≤ λ|H0)

rejecting H0 (with probability ξ if Λ = λ) in favor of H1, is the most powerful test of size α for the
threshold λ, where

α = ξ × Pr(Λ = λ|H0) + Pr(Λ < λ|H0)

An alternative to classical hypothesis testing described so far, is the Bayesian decision making
process, based on Bayes factors.

Definition 7 (Bayes factor) A random sample X = {Xn}, of a d−dimensional stochastic variable X
d,

is assumed to arise or under a null hypothesis H0 either an alternative hypothesis H1 with probabilities
p(X|H0) and p(X|H1), respectively. Given a priori probabilities such that p(H0) = 1−p(H1), the sample
produces a posteriori probabilities p(H0|X) = 1 − p(H1|X). The trasformation of the prior opinion to
the posterior opinion is given by the Bayes factor B.

From Bayes’ theorem:

p(Hk|X) =
p(X|Hk)p(Hk)

p(X|H0)p(H0) + p(X|H1)p(H1)
, k = 0, 1

it follows:

p(H0|X)

p(H1|X)
=
p(X|H0)

p(X|H1)

p(H0)

p(H1)

where

B =
p(X|H0)

p(X|H1)

is the Bayes’ factor which relates prior and posterior odds. If H0 and H1 are simple hypotheses (i.e.
they are single distributions with no free parameters), B = Λ(X). If hypotheses depend on unknown
parameters, the probabilities in the Bayes’ factor can be obtained by integrating over the parameter
space S:

p(X|Hk) =

∫

S

p(X|tk,Hk)π(tk|Hk)dtk, k = 0, 1
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where tk are the parameters for the hypothesis Hk, π(tk|Hk) is their prior probability and p(X|tk,Hk)
is the likelihood function. We refer to [319] (and ref. therein) for further information.

From the above equation, it follows that at variance with classical hypothesis testing, the Bayesian
decision making process considers the probability of a model by taking into account all possible values
of parameters. Interpretation of the Bayes factor can be found in [320], where the strength of evidence
is reported versus B. The definition of the Bayes’ factor is elegant and takes into account information
carried out by all parameters; on the other hand setting priors is a well known problem and the main
reason of criticism.

B.2 Information theory hints

Information theory is the branch of mathematics dealing with the efficient and accurate storage, trans-
mission, and representation of information [321]. The key quantities of information theory are informa-
tion and entropy, defined in the following.

Definition 8 (Information) Let X(d) be a d−dimensional stochastic variable with density f(x), where
x represents a d−dimensional outcome of X(d). The information associated with x is defined by

I(x) = ln

(
1

f(x)

)
= − ln f(x)

The information unit depends on the logarithm base used: for base 2 unit is bit, for unit e unit is nat.

Definition 9 (Shannon entropy) Let X(d) be a d−dimensional stochastic variable with density f(x),
where x represents a d−dimensional outcome of X(d). The Shannon entropy (or information entropy)
of X(d) is defined by

H(X(d)) = E
[
I(X(d))

]
= −

∫

O

f(x) ln f(x)dx

Because of the above definition, in the following we will refer to the entropy of a stochastic variable
H(X(d)) or to the entropy of its density H(f(x)) with no difference.

Definition 10 (Joint entropy) Let X(d),Y(d), ...,Z(d) be d−dimensional stochastic variables with joint
density f(x,y, ..., z), where x, y, ..., z represent a d−dimensional outcome of X

(d), Y
(d), ..., Z

(d),
respectively. The joint entropy of the stochastic variables is defined by

H(X(d),Y(d), ...,Z(d)) = −
∫

O

f(x,y, ..., z) ln f(x,y, ..., z)dΩ

where Ω = dxdy...dz and O is the total observation space.

Definition 11 (Statistical divergence) Given a probability space P, the statistical divergence of
the density f to the density g is the mapping D : P2 −→ R such that

• D(f ||g) ≥ 0 ∀f, g ∈ P;

• D(f ||g) = 0 ⇔ f = g.

In general the divergence is not simmetric and a dual divergence can be defined as D∗(g||f) = D(f ||g).
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In many practical applications, the statistical divergence is defined by mean of a function ϕ

Dϕ(f ||g) =
∫

O

f(x)φ [f(x), g(x)] dx

and it is used to establish how much two densities are statistically similar each other.

Definition 12 (Kullback-Leibler divergence) Given two densities f and g of a d−dimensional
stochastic variable X

(d), both defined on the probability space P, the Kullback-Leibler divergence
(or information gain) is defined as

DKL(f ||g) =
∫

O

f(x) ln
f(x)

g(x)
dx

Information, Shannon entropy, conditional and cross entropy can be easily derived from the Kullback-
Leibler divergence.

The Kullback -Leibler divergence is the coding penalty of selecting the density g to approximate the
density f [275]: it is strictly related to the average likelihood L(f |g) which expresses the probability of
observing a density f assumed that a model g is true.

Theorem 6 Let X
(d) be a d−dimensional stochastic variable with continuous density g(x; t), where

x represents a d−dimensional outcome of X
(d) and t is the set of m real parameters of a statistical

parameterized model. If n indipendent outcomes are available and t0 is the set of true density (presumed
unknown and to be estimated through MLE) for the true density f(x; t0), then

DKL(f ||g) = −
(
L(t) +H(f)

)

where H(f) = H(X(d)|t0) is the Shannon entropy of the true density and

L(t) = lim
n−→∞

1

n
lnL(t)

is the average log-likelihood.

Proof 3 By definition of likelihood function, it follows:

1

n
lnL(t) =

1

n

n∑

i=1

ln g(xi|t)

lim
n−→∞

1

n
lnL(t) =

∫

O

f(x|t0) ln g(x|t)dx

where we heuristically assumed that in the limit of an infinite number of experiments, the sampling
density g equals the relative frequencies of xi. The Shannon entropy of the true density is

H(f) = H(X(d)|t0) = −
∫

O

f(x|t0) ln f(x|t0)dx

and it follows:

lim
n−→∞

1

n
lnL(t) +H(f) =

∫

O

f(x|t0) ln
g(x|t)
f(x|t0)

dx

= −
∫

O

f(x|t0) ln
f(x|t0)
g(x|t) dx

= DKL(f ||g)
that ends the proof.
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Axiom 2 (Maximum Entropy Principle) Given some testable information, the best density repre-
senting the current state of knowledge is the one with largest information entropy.

We refer to [322] for further information about the above theorem and to [323–325] for an extensive
discussion about the maximum entropy principle.

Definition 13 (Mutual information) Given two d−dimensional stochastic variables X
(d) and Y

(d)

on the same probability space and the density f , their mutual information is the simmetric measure
defined as

I(X(d);Y(d)) = DKL [f(x,y)||f(x)f(y)]

=

∫

O

f(x,y) ln
f(x,y)

f(x)f(y)
dΩ

The mutual information has the following properties:

• I(X(d);Y(d)) = 0 for uncorrelated variables;

• I(X(d);Y(d)) = I(Y(d);X(d));

• I(X(d);Y(d)) = H(X(d)) +H(Y(d))−H(X(d),Y(d)).

The Jensen-Renyi divergence

Dq(f ||g) = − 1

1− q
ln

∫

O

[f(x)]q[g(x)]1−qdx

where

lim
q−→1

Dq(f ||g) = DKL(f ||g)

is the most general information theoretical measure: with the right assumptions, every other information
measure can be derived. We refer to [326–329] for further information.
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