ArchivIA Università degli Studi di Catania
 

ArchivIA - Archivio istituzionale dell'Universita' di Catania >
Tesi >
Tesi di dottorato >
Area 01 - Scienze matematiche e informatiche >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10761/3910

Issue Date: 7-Mar-2018
Authors: Guerrieri, Lorenzo
Title: Shannon extensions of regular local rings. Lefschetz properties for Gorenstein graded algebras associated to Apery Sets.
Abstract: Let R be a regular local ring of dimension d > 1. Recently, several authors studied the rings obtained as infinite directed union of iterated local quadratic transforms of R. Here, in the first two chapters we present some results about the ideal theoretic structure and GCD property for such rings and we discuss the more general case of local monoidal transform of R. In the third chapter, we study the Weak Lefschetz property of two classes of standard graded Artinian Gorenstein algebras associated in a natural way to the Apery set of numerical semigroups. To this aim we also prove a general result about the transfer of Weak Lefschetz property from an Artinian Gorenstein algebra to its quotients modulo a colon ideal.
Appears in Collections:Area 01 - Scienze matematiche e informatiche

Files in This Item:

File Description SizeFormatVisibility
GRRLNZ90P13H501S.pdf857,23 kBAdobe PDFView/Open


Items in ArchivIA are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

  Browser supportati Firefox 3+, Internet Explorer 7+, Google Chrome, Safari

ICT Support, development & maintenance are provided by the AePIC team @ CILEA. Powered on DSpace Software.